
NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

FEASIBILITY COMPARISON AND ANALYSIS OF

THE UNIX NETWORK ENVIRONMENT AND THE

WINDOWS NT ENVIRONMENT FOR

INTEGRATION WITH THE DEFENSE

INFORMATION INFRASTRUCTURE (DH)

by

Mark F. Sauer

Timothy J. Smith

John W. Sprague

Joseph E. Staier

September 1996

Thesis Advisor:
Associate Advisor:

Norman Schneidewind
James Emery

CVJ

Approved for public release; distribution is unlimited.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of

this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1996

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Feasibility Comparison and Analysis of the UNIX Network Environment and the
Windows NT Environment for integration with the Defense Information
Infrastructure (DII)
6. AUTHOR(S)
Mark F. Sauer, Timothy J. Smith, John W. Sprague, Joseph E. Staier

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DKTRffiUTION/AVAILABILrrY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT
The history of the Department of Defense (DOD) information system technical infrastructure includes a

collection of stovepipe, single purpose systems. Recently, the DOD has developed initiatives to help promote the
development of common target architectures to which DOD information systems can migrate, evolve, and interoperate.
The DOD's Technical Architecture Framework for Information Managers (TAFIM) provides system developers guidance
and methodologies for developing standard architectures. The Defense Information Infrastructure (DII) Common
Operating Environment (COE) is a development architecture based on the ideas of TAFIM, and provides a framework for
designing and building military information systems.

This thesis applies the objectives presented in TAFIM in order to develop an approach for determining which
network operating system (NOS) would best facilitate implementations of the DII COE. By first examining the evolution
of Navy information systems, and the development of the DII COE, this thesis provides a detailed description of
requirements placed on a NOS by a DOD DII COE based information system. These requirements are then used to help
understand how TAFIM's objectives apply to NOSs. Two prevalent NOSs, Unix and Windows NT, are evaluated
structured on TAFIM's guidance and the requirements of the DII COE. A determination is made based on these
guidelines that both NOSs belong in future information systems, for appropriate tasks, based on the DII COE.

14. SUBJECT TERMS Defense Information Infrastructure, Common Operating Environment, Windows
NT, Unix, Network Operating System, Technical Architecture Framework for Information Managers,
TAFM, Du, DH COE

15. NUMBER OF PAGES

226

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSM
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500
(Rev. 2-89)

Standard Form 298

Prescribed by ANSI Std. 239-18298-102

Approved for public release; distribution is unlimited.

FEASIBILITY COMPARISON AND ANALYSIS OF THE UNIX NETWORK
ENVIRONMENT AND THE WINDOWS NT ENVIRONMENT FOR

INTEGRATION WITH THE DEFENSE INFORMATION INFRASTRUCTURE
(DH)

Mark F. Sauer - Lieutenant, United States Navy

B.A., University of Michigan, 1988

Timothy J. Smith - Lieutenant, United States Navy

B.S., United States Naval Academy, 1989

John W. Sprague - Lieutenant, United States Navy

B.S., The Pennsylvania State University, 1990

Joseph E. Staier, Lieutenant JG, United States Coast Guard

B.S., United States Coast Guard Academy, 1992

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCD2NCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 1996

Author:

Author:

Author:

Author:

Approved by:

_- -j^MarkF. Satrar. >

/7 • TimtfthvIJSmith

Reuben Harris, Chairman
Department of Systems Management

ui

IV

ABSTRACT

The history of the Department of Defense (DOD) information system technical

infrastructure includes a collection of stovepipe, single-purpose systems. Recently, the DOD

has developed initiatives to help promote the development of common target architectures to

which DOD information systems can migrate, evolve, and interoperate. The DOD's Technical

Architecture Framework for Information Managers (TAFIM) provides system developers

guidance and methodologies for developing standard architectures. The Defense Information

Infrastructure (DII) Common Operating Environment (COE) is a development architecture

based on the ideas of TAFIM, and provides a framework for designing and building military

information systems.

This thesis applies the objectives presented in TAFIM in order to develop an approach

for determining which network operating system (NOS) would best facilitate implementations

of the DII COE. By first examining the evolution of Navy information systems, and the

development of the DII COE, this thesis provides a detailed description of requirements placed

on a NOS by an information system based on the DOD DII COE. These requirements are then

used to help understand how TAFIM's objectives apply to NOSs. Two prevalent NOSs, Unix

and Windows NT, are evaluated according to TAFIM's guidance and the requirements of the

DII COE. A determination is made based on these guidelines that both NOSs belong in future

information systems, for appropriate tasks, based on the DII COE.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROBLEM STATEMENT 1
B.MOTIVATION 3
C. BACKGROUND 4

l.JOTS&NTCS-A 4
2.JMCIS 7
3.GCCS 11
4. Defense Information Infrastructure (DII) 13
5. Technical Architecture Framework for Information Managers (TAFIM)
 14

D. SCOPE & ORGANIZATION 18

n. DEFENSE INFORMATION INFRASTRUCTURE COMMON OPERATING
ENVIRONMENT (DII COE) 21

A ANALYSIS 21
1. Environment 21
2. Common Operating Environment Design 25

B. OPERATING SYSTEM REQUIREMENTS IN THE DII COE
ENVIRONMENT 32

1. Operating System Requirements 32
2. Hardware Requirement 34

C. DII COE OBJECTIVES AND STANDARDIZATION 38
1. Objectives 38
2. Open Systems 39
3. Open Systems in the DOD 43
4. DII COE/TAFIM defined standards 44

m. TECHNICAL ARCHITECTURE FRAMEWORK FOR INFORMATION
MANAGEMENT (TAFIM) OBJECTIVES 49

A. IMPROVE USER PRODUCTIVITY 49
1. TAFIM's definition of the objective 49
2. Interpretation of objective 49
3. Analysis of the Unix architecture 53
4. Analysis of the Windows NT architecture 58
5. Summary of findings 64

B. IMPROVE DEVELOPMENT EFFICIENCY 67
1. TAFIM's definition of the objective 67
2. Interpretation of objective 67
3. Analysis of the Unix and Windows NT architectures 77
4. Summary of findings 78

C. IMPROVE PORTABILITY AND SCALABILITY 78
1. TAFIM's definition of the objective 78
2. Interpretation of objective 79

vii

3. Analysis of the Unix architecture 84
4. Analysis of the Windows NT architecture 88
5. Summary of findings 91

D. IMPROVE INTEROPERABILITY 92
l.TAFIM's definition of the objective 92
2. Interpretation of the objective 93
3. Analysis of the Unix architecture 98
4. Analysis of the Windows NT architecture 100
5. Summary of findings 104

E. PROMOTE VENDOR INDEPENDENCE 105
1. TAFIM's definition of the objective 105
2. Interpretation of objective 106
3. Analysis of the Unix architecture Ill
4. Analysis of the Windows NT architecture 114
5. Summary of findings 116

F. REDUCE LIFE CYCLE COSTS 119
l.TAFIM's definition of the objective 119
2. Interpretation of objective 119
3. Analysis of the Unix architecture 129
4. Analysis of the Windows NT architecture 133
5. Summary of findings 137

G. IMPROVE SECURITY 139
1. TAFIM's definition of the objective 139
2. Interpretation of the objective 141
3. Analysis of the Unix architecture 149
4. Analysis of the Windows NT architecture 152
5. Summary of findings 155

H. IMPROVE MANAGEABILITY 158
1. TAFIM's definition of the objective 158
2. Interpretation of objective 158
3. Analysis of the Unix architecture 167
4. Analysis the Windows NT architecture 169
5. Summary of findings 173

IV. CONCLUSION 177

A. DETERMINING THE RIGHT NOS .177
1. Which NOS is better for the DIICOE? 177
2. Where are we? 178

B. REMAINING INFLUENCING ISSUES 179
1. Where should we be going? 179
2. Why did we choose TAFIM objectives? 180
3. What have we accomplished? 181
4. How can you achieve added benefits for your information system? ..181
5. What is the conclusion on standards? 182

C. AREAS FOR FURTHER RESEARCH 183

APPENDK A. GCCS COE AS-BUILT STANDARDS 185

viii

APPENDIX A. GCCS COE AS-BUILT STANDARDS 185

APPENDIX B. COMMON CONSENSUS STANDARDS 189

APPENDK C. ORANGE BOOK CLASSIFICATIONS 191

APPENDIX D. UNK AND WINDOWS NT AT A GLANCE 193

APPENDIX E. UNDC AND WINDOWS NT COMPARISON MATPJX 195

LIST OF REFERENCES 197

INITIAL DISTRIBUTION LIST 205

ix

LIST OF FIGURES

Figure 1. NTCS-A Evolution [NRAD02] 5
Figure 2. JMCIS Programmatic Strategy [NRAD02] 7
Figure 3. JMCIS Evolution [GAUS93] 9
Figure 4. GCCS as a portion of a COE based system 23
Figure 5. DH COE Taxonomy [BUTL96, p. 8] 27
Figure 6. DII COE Architecture 29
Figure 7. Unix Evolution [MICR03] 54
Figure 8. Unix Core Architecture 57
Figure 9. Windows NT Architecture 60
Figure 10. Scope of Open Systems Standards [ROYS96, p. 9] 70
Figure 11. The range of scalable systems 84
Figure 12. Application Scalability under Windows NT 91
Figure 13. Interoperability between PCs and Unix Workstations [MICR14] 94
Figure 14. NT implementation ofOSI Reference Model [MICR03] 101
Figure 15. DOD Software Cost Projection [RAME95] 126
Figure 16. OS Market Share [HALF96, p. 52] 138
Figure 17. User Manager for Domains - New User Dialog Box 172

XI

Xll

LIST OF TABLES

Table 1. Open Systems Standards [ROYS96 p. 8] 68
Table 2. NOS Protocols [MICR09] 103
Table 3. GCCS COE As-Built Standards Profile 187
Table 4. Summary of Consensus Standards from [DISA03, Vol 2 p. 3-5] 190

Xlll

XIV

LIST OF EQUATIONS

Equation 1. The probability of guessing a password 144
Equation 2. Determining the number of possible passwords 145
Equation 3. Determining the length of a password 145

xv

XVI

ACRONYM LIST

3GL Third Generation Language

ACS Afloat Correlation System

ADP Automated Data Processing

API Application Program Interface

ARPANET Advanced Research Projects Agency Network

ASCII American Standard Code for Information Interchange

ASN(RDA) Assistant Secretary of the Navy Research Development and
Acquisition

ASWTDA Anti-Submarine Warfare Tactical Decision Aids

ATO Air Tasking Order

ATP Advanced Tracking Prototype

BGPHES Battle Group Passive Horizon Extension System

BSDI Berkeley Software Design Incorporated

C2 Command and Control

C3I Command, Control, Communications and Intelligence

C4I Command, Control Communications, Computers and Intelligence

CCSC Cryptological Combat Support Console

CCSS Cryptological Combat Support System

CDE Common Desktop Environment

CID/DIU Cryptological Interface Device/Unit

CISC Complex Instruction Set Computing

CMTP Communications Management Information Protocol

COE Common Operating Environment

COTS Commercial Off the Shelf

CTOS Convergent Technology Operating System

DBMS Database Management System

DII Defense Information Infrastructure

DISA Defense Information System Agency

DOD Department of Defense

xvn

DON

E/IDE

EC/EDI

EEI

EISA

EPS

EWCM

FAT

FIST/Fulcrum

FTP

GCCS

GCN

GCSS

GOTS

GUI

HTML

I&RTS

I/O

IDE

IEEE

IFS

IRQ

ISO

JFAC

JMCIS

JOPES

JOTS

LAN

LINUX

LOGREQ

Department of the Navy

Enhanced Integrated Drive Electronics

Electronic Commerce/ Electronic Data Interchange

External Environment Interface

Enhanced Industry Standard Architecture

Enterprise Level Parallel Server

Electronic Warfare Coordination

File Allocation Table

A Satellite Intelligence and Imagery system

File Transfer Protocol

Global Command and Control System

Government Computer News

Global Command Support System

Government Off the Shelf

Graphic User Interface

Hypertext Markup Language

Integration and Run-Time Specification

Input/Output

Integrated Drive Electronics

Institute of Electrical and Electronic Engineers

Installable File System

Interrupt Request

International Standards Organization

Joint Forces Air Command

Joint Maritime Command Information System

Joint Operations Planning and Execution Service

Joint Operational Tactical System

Local Area Network

A Unix variant for PCs named after its developer Linus Torvalds

Logistic Requirement

XVlll

MAC Medium Access Control

MHz Megahertz

MILNET Military Network

MRMS Maintenance Resource Management System

MWM Motif Windowing Manager

NALCOMIS Navy Aviation Logistic Command Management Information System

NAVSSI Navigation Sensor System Interface

NCCS-A Naval Command and Control system Ashore

NFS Network File System

NIC Network Interface Card

NIPS Naval Intelligence Processing System

NIST National Institute of Standards and Technology

NITES NTCS-A Integrated Tactical Environmental Subsystem

NOS Network Operating System

NSA National Security Agency

NTCS-A Naval Tactical Command system Afloat

NTCSS Naval Tactical Command Support System

NTFS New Technology File System or NT File System

NWSS Navy WWMCCS Software Standardization

OBU/OED Ocean Surveillance Information system (OSIS) Baseline Upgrade

OLE Object Linking and Embedding

OPNAV Office of the Chief of Naval Operations

OS Operating System

OSF Open Software Foundation

OSI Open Systems Interconnection

OSS Operations Support System

PDU Protocol Data Units

POSIX Portable Operating System Information Exchange

POST Prototype Ocean Surveillance Terminal

RAID Redundant Array of Inexpensive Drives

XIX

RIP

RISC

SCSI

SEWC

SIPRNET

SNAP

SNMP

SPAWAR

SQL

SQL

SSEE

STT

SVGA

TAC-4

TAFIM

TCP/IP

TDBM

TFCC

TIMS

TRM

TSC

U.S.

UB

UIL

UPS

VGA

WAN

WWMCCS

Routing Information Protocol

Reduced Instruction Set Computing

Small Computer Systems Interface

Space and Electronic Warfare Coordinator

Secure Internet Protocol Routing Network

Shipboard Non-tactical ADP Program

Simple Network Management Protocol

Space and Naval Warfare Systems Command

Structured Query Language

Structured Query Language

Ship Signal Exploitation

Shore Targeting System

Super Video Graphics Array

Tactical Advanced Computer contract 4

Technical Architecture Framework for Information Management

Transmission Control Protocol/Internet Protocol

Tactical Database Management System

Tactical Flag Command Center

Theater Information Management System

Technical Reference Model

Tactical Support Center

United States

Unified Build

User Interface Scripting Language

Universal Power Supply

Video Graphics Array

Wide Area Network

Worldwide Military Command and Control System

XX

I. INTRODUCTION

A. PROBLEM STATEMENT

The purpose of this thesis is to determine which network operating system (NOS),

the Unix NOS or the Windows NT NOS, best meets those objectives outlined in Defense

Information System Agency's (DISA) Technical Architecture for Information

Management (TAFIM) Technical Reference Model (TRM). The expectation is that this

thesis will aid in the selection of a NOS for the Department of Defense (DOD) that best

complies with the TAFIM, and best supports the Defense Information Infrastructure

Common Operating Environment (DU COE).

There has been an industry-wide trend moving away from independent stovepipe

systems to more joint and global information systems. This is often called in the computer

industry today a movement towards open systems. This trend has been driven largely by

the increasing costs of developing and maintaining information systems. Traditionally

information systems in organizations were developed with overlapping functionality.

Systems were built that performed several common, basic tasks, yet they could not share

information. Recently, however, developers have realized the benefits of designing

systems based on a set of common building blocks that are readily available to all systems

developers. Developers and users benefit from systems built on these concepts because

they would promote lower costs, lower investment risks, greater flexibility and greater

scalability.

The DOD has also realized the importance of this trend. This thesis will provide,

as background, an analysis of the evolution of a DOD information system, and recent

efforts by the DOD to achieve a common operating environment for developing

information systems. The history of information systems in the DOD underscores the

need for the DOD to achieve more open systems. The evolution of the Joint Operation

Tactical System (JOTS) demonstrates the DOD's trend towards richer information

content, inter-connectivity, and resource sharing through the use of open systems

architectures. This need was recognized by the DOD and resulted in the development of

several documents, including TAFJJM and the Du COE.

The DOD has for years (since the late 1960s) incorporated computer technology

to facilitate day-to-day business and information processing. By the late 1980s, DOD

information systems were being developed with greater information content, inter-

connectivity, and resource sharing. This trend, closely following private sector trends,

uncovered a serious flaw in DOD information system development strategies - specifically

the development of incompatible stovepipe systems. A major contributing factor for the

large number of incompatible systems in the DOD was the multiple operating systems in

use.

The DOD has realized, as have other business organizations, the importance in the

development of any information system of the selection of a NOS. DOD directives,

including TAFIM and DJJ COE, have incorporated standards that aid in the selection of a

NOS for DOD information systems. These documents that detail standards and provide a

framework for developing systems have led to the selection of a Unix-based network

2

operating environment. Recently, however, other operating systems have been introduced

in the market place that appear to meet the basic guidelines provided by TAFM, and in

some cases may exceed the capabilities provided by the OSs (Solaris version 2.4 and

Hewlett-Packard version 9.0.7) that DOD has selected for its current command system

platform, the Global Command and Control System (GCCS).

This thesis provides an analysis of two NOSs, Unix and Windows NT. It evaluates

each NOS to determine which overcomes the described shortcomings of previously

developed DOD information systems (the shortcomings that were later described in

TAFM as the objectives to be used for the development of future DOD information

systems).

B. MOTIVATION

The authors feel that the DOD has maintained its historical ties to the Unix

operating system when developing current information systems such as the Joint Maritime

Command Information System (JMCIS) and the GCCS. While Unix may have been the

operating system of choice in the past, current market trends and technologies -

specifically, those found in Windows NT - may have qualities that should be evaluated and

compared to Unix. The TAFIM TRM criteria and objectives of TAFIM should reflect the

fast changing and rapidly advancing trends of the market place.

C. BACKGROUND

The DOD has become increasingly aware that systems integration is essential in

cost cutting and downsizing, as well as from a simple systems management point of view.

In the following sections, we discuss each component of the evolution of the current DOD

information system. Each system is incorporated into the next system, and eventually

becomes a new piece of the picture that results in the DOD's current information system.

The background concludes with a description of TAFIM and why the TRM section of

TAFIM is used as the "hallmark" comparison that the two NOSs are measured against.

1. JOTS & NTCS-A

The JOTS command and control system began as a Command, Control,

Communication, and Intelligence (C3I) prototyping effort in 1986. Since 1986, variants

of the JOTS system have been installed on deploying ships and shore stations to aid in the

command, control, and track management of units at sea (friendly, unknown, and hostile).

Advancements in computer technologies have led to the development of a JOTS-

derivative system called the Navy Tactical Command System, Afloat or NTCS-A. Figure

1 shows the evolution of the JOTS system to the NTCS-A system.

I CHART
20 Tdbm

20

OSS

JOTS II
; 1.0.x

JOTS II
1.1 UNIFIED

BUILD
CORRELATION & TRACKING Internal

Sht>board
Interfaces

JOTS II
IASWTDAU 1.1.X

ES^

NIPS CDBS

STRKE PLOT

Track-to-Track
Correlator

Figure 1. NTCS-A Evolution [NRAD02]

Since the initial prototyping efforts in 1986, versions of one or both systems have

been installed onboard over 200 U.S. Navy ships, at several U.S. Navy ashore intelligence

centers, onboard U.S. Coast Guard cutters, onboard allied ships, and at various allied

sites. These systems clearly demonstrated their value as key Command and Control (C2)

systems for the United States and its NATO Allies during the Persian Gulf War.

As JOTS matured further and as other C3I systems were developed and deployed,

it became apparent that there was much duplication of software and functionality across

systems, and that this duplication led to increased development, maintenance, and training

costs. Interoperability was practically nonexistent across systems even when systems

followed the same set of standards. Perhaps the most serious impact, however, was that

operators were often given conflicting information from multiple systems even when the

systems were presented with identical data.

Based upon this observation and experience, the Space and Naval Warfare

Systems Command (SPAWAR) directed that the afloat software be abstracted into a

common "core" set of software that could be used throughout the afloat community as a

basis for all afloat community systems. This effort led to a set of common software called

Government Off-The-Shelf (GOTS) version 1.1. SPAWAR then directed that this

approach be extended to include not only the afloat community, but the ashore community

as well. This way both communities could share the same common set of software to

reduce development costs, ensure interoperability, and reduce training costs. This effort

resulted in a collection of software commonly referred to as the Unified Build (UB)

version 2.0 and also referred to as GOTS 2.0 [NRAD03],

This software is now deployed both afloat, in NTCS-A and ashore, in a system

referred to as Operations Support System (OSS) or Navy Command and Control System -

Ashore (NCCS-A). The strength of these two systems is that they are built on top of a

common set of functions so that advancements and improvements in one system are

immediately translatable to advancements and improvements in the other system. The UB

software is presently the basis for numerous other efforts, including systems for the Navy,

Marine Corps, Coast Guard, and, increasingly, for the joint community. The

programmatic strategy is to integrate all these software programs into a common

infrastructure called JMCIS. Figure 2 is a description of how NTCS-A and OSS integrate

into JMCIS.

Requirements

OPNAV
Sponsors'

View

SPAWAR
VIEW

0 T 0 N N B N N
s s B T T G A 1
s c U C C P V T

S S H S E
0 A s E S S
E S 1
D

Acquisition

ASN (RDA)
View

SYSTEMS INTEGRATION

JMCIS

SPAWAR
VIEW

Maritime Forces View

Figure 2. JMCIS Programmatic Strategy [NRAD02]

2. JMCIS

JMCIS was the next step in the evolution of the Navy's information system.

JMCIS is both a development concept and an information system currently deployed to

the fleet. To properly understand what JMCIS is, it is important to consider the viewpoint

of the end user (sailor/soldier), the military program manager, and the system developer.

To the end user, JMCIS represents a command information system that is distributed

across a local area network (LAN) of workstations. An operator is able to access all

required functionality from any workstation, regardless of where the workstation is

located or where the actual processing takes place on the LAN. Functionality that exists

throughout the system, but which is not useful for the operator's tasks, is hidden so as to

not overwhelm and confuse the operator with extraneous features. An operator with a

different set of tasks, however, may see a different set of functionalities, but both

operators will perceive that the system looks and operates in the same manner. Moreover,

to both operators, JMCIS will appear to be the same command information system in use

by other U.S. military services. This is increasingly important in the joint community

where joint exercises, such as Joint Forces Air Command (JFAC), are performed to

reassign command responsibilities from one service to another. While the end user sees

JMCIS as an information system on a LAN, it is actually only part of the complete system

that exists across a much larger wide area network (WAN).

From the perspective of a military program manager, JMCIS presents the

opportunity to create an umbrella program, that encompasses several aspects of the

program manager's problem domain. In a downsizing military, the program managers

need to perform tasks with increased efficiency and less resources. For example, in the

late 1980s, SPAWAR PD-60 (Navy-Afloat program management) supported the JOTS

program for battlegroup track database management, NIPS (Naval Intelligence Processing

System) for database management, TIMS (Tactical Information Management System) for

automatic display of status information, FIST/FULCRUM for imagery acquisition, and a

host of other related programs just to support the battlegroup commanders. Ashore

program managers had similar programs to support Navy intelligence centers. JMCIS

now provides Navy program management with an umbrella program which combines the

requirements into a single, consolidated, coordinated system. The associated cost savings

are substantial. Figure 3 shows the incorporation of the many stovepipe programs into

JMCIS.

JMCIS Architectural Evolution
PRE 1993 1993 1994 1995 1996 1997

CCSC
CCSS- OBU/OED- JMCIS

AN/USO-119A(V)

MRMS-
NALCOM1S'

NTCSS- BGPHES

Figure 3. JMCIS Evolution [GAUS93]

From the perspective of a system developer, JMCIS is an open architecture and a

software development environment that offers a collection of services and already built

modules for command information system components. The system developer's task is to

assemble and customize the existing components from JMCIS while developing only those

unique components that are peculiar to his particular mission requirements. In many, if

not most, cases this amounts to adding new "pull-down menu entries."

In many ways, the JMCIS model is similar to the Microsoft Windows paradigm.

The idea is to provide a standard environment, a set of standard off-the-shelf components,

and a set of programming standards that describe how to add new functionality to the

environment. JMCIS is also a superset collection of software. More precisely, JMCIS

should be viewed as a collection of several related items required for any command

information system development. JMCIS is all of the following:

1. A clearly defined set of functions (modules) that constitute a command information
system. These functions, along with the software that implements them, form the
JMCIS core, which includes track management, correlation, communications, and
tactical display components.

2. A precisely defined architecture for how the modules will interact and fit together,
and a definition of the system level interface for the modules.

3. A standard operating environment that includes "look and feel," operating system,
and windowing environment standards.

4. A commercial set of Unix, X-Windows, and Motif standards and software.

5. A collection of already developed and tested modules that implement the above
functions according to the architecture described above, and a set of Application
Programmer Interfaces (APIs) for accessing these functions.

6. A collection of already developed and tested Tactical Decision Aids (TDAs) and
support functions (range and bearing calculations, Closest Point of Approach
(CPA), etc.) that may be incorporated into a command information system.

In addition to understanding what JMCIS is, it is important to understand what it

is not. JMCIS is none of the following:

1. The same as UB, NTCS-A, or OSS. Each of these efforts have contributed
software to the JMCIS superset. UB is now multiple JMCIS segments while
NTCS-A and OSS are replaced by appropriate JMCIS variants.

2. A solution for all command and control problems. However, a large number of
applications, whether or not related to Command and Control, share common
requirements with JMCIS.

3. Government modified COTS products. Commercial software is used whenever
practical, but the executable code and data files are not modified except to
customize the COTS products as described in the vendor COTS documentation.
For example, the Unix operating system used within JMCIS is fully Portable
Operating System Information Exchange (POSIX) compliant but is configured to
meet requirements (shared memory, message pool, etc.) using vendor-supplied
techniques. This is equivalent, in the personal computer (PC) arena, to editing the
disk operating system (DOS) CONFIG.SYS and AUTOEXEC.BAT files.
Virtually all PC software products require customization of these files.

10

4. A deviation from accepted industry standards. Commercially available standards,
such as the Motif Style Guide, are used to the fullest extent possible with
customizations made within the scope of the standards to allow for the uniqueness
of the military environment. For example, military systems must accommodate
low light/red light/blue light operating conditions.

5. Vendor proprietary (by some definitions). Vendor proprietary products are used
(such as Unix, Oracle, and Sybase) but these are vendor proprietary
implementations of industry standards. No SPAWAR funded JMCIS software is
vendor proprietary. [NRAD01]

3. GCCS

GCCS is a relatively new information system which has recently been deployed at

several operational Commanders in Chief units (CINCs).1 GCCS was developed to

improve the joint warfighter's ability to effective execute a number of missions, while at

the same time integrating Command, Control, Communications, Computers and

Intelligence (C4I) systems from services and DOD agencies. GCCS is intended to support

the joint warfighter in operations ranging from peacetime humanitarian operations to non-

nuclear strategic war. GCCS was developed for the DOD by DISA. The initial objectives

of GCCS was the replacement of the World-Wide Military Command and Control System

(WWMCCS) and the implementation of the C4I for the Warrior Concept.2 The goal is to

have GCCS become the "single, global command, control, communications, computer and

1 Global Command Support System (GCSS) is presently under development and is targeted for
the warfighting support functions (logistics, transportation, etc.) to provide a system that is fully
interoperable with the warfighter C4I system. When implemented to its fullest potential, GCSS will
provide both warfighter support and cross-functional integration on a single workstation platform.

2 C4I for the Warrior provides guidance for DOD information managers to solve the
interoperability issues throughout the services. It is designed to support the joint warrior on the
battlefield, allowing timely, accurate, and relevant information to be "pulled" by the warrior.

11

intelligence system to support the warfighter, whether from a foxhole or from a command

post." [DISA06, p. ii]

The target GCCS architecture is based on the JMCIS architecture, the Army

AWIS, and advanced information processing and communications technologies. It

supports a wide variety of command and control missions and functions. GCCS version

1.1 included mission applications from a variety of other programs operating in a

"federated" mode. Like the JMCIS architecture, GCCS was developed with the idea of

trying to improve on architectures of previous DOD information systems. Other

considerations stated in the GCCS COE during development were the rapid changes in

technological areas and the changing national strategy. The result was to develop an

evolutionary migration strategy that provided for the following:

• Keeping the war fighter involved at all levels.

• Allowing the war fighter to retrieve, manipulate, share, and view database
information as needs change.

• Providing a unifying architecture that provides a path for migration.

• Building an open infrastructure flexible enough to easily accommodate future
requirements.

• Relying upon the military services and agencies of GCCS components, data
sources, and information sources.

• Allowing a vehicle for technology insertion [DISA06, p. 1-1].

Conceptually, GCCS consolidates and modernizes all existing command and

control functions in the DOD. DISA provides systems engineering services for designing

future information systems [FONG94]. The GCCS architecture provides integrated

12

information processing and transport capabilities in support of a variety of warfighting

functions and missions. In fact, GCCS runs the JMCIS software segment, as well as other

service specific software applications. GCCS requires reliable high-speed networking,

multi-media conferencing, distributed simulation, and training. In addition, GCCS

accommodates many information applications through shared processing, distributed data,

multimedia communications, and centralized monitoring and control. Functionally GCCS

takes JMCIS one step further, by integrating all of the information system needs for

tactical support into one standardized system networked across a LAN/WAN.

The desire for DISA is to have GCCS migrate to full compliance with TAFIM.

The GCCS COE adopts all of the objectives for developing information systems stated in

the TAFIM TRM When achieved, it is thought that GCCS will benefit from having an

open system architecture. GCCS is intended to be hardware independent, and capable of

operating on a range of open systems platforms. Its operating system is to be a standards-

based operating system. At present, only two variants of the Unix NOS have been

implemented in GCCS, HP-UX v9.01 and Sun Solaris v2.3.

4. Defense Information Infrastructure (Du)

DIJ was created during the early stages of GCCS development because DISA

realized that instead of developing a specific intermediate system, a more all-encompassing

open-system concept was needed. This new COE would allow all new systems,

applications, and databases to be developed in an open-system environment ensuring a

reduction in common problems such as data redundancy/duplication, and system security.

13

DU is a design intended to permit all DOD information systems to communicate and share

information through the use of standardization. DII achieves this standardization by

defining several "open architectures" that are platform independent. At the base of this

standardization effort is the definition of a Common Operating Environment (COE). The

COE concept is best described as:

• An architecture that is fully compliant with TAFIM Volume 3

• An approach for building interoperable systems

• A collection of reusable software components

• A software infrastructure for supporting mission area applications

• And a set of guidelines and standards

The guidelines and standards specify how to reuse existing software, and how to

properly build new software so that integration is seamless and, to a large extent,

automated [DISA02]. GCCS and GCSS presently use the DII COE. Both use the same

infrastructure and integration approach, and the same COE components for functions that

are common between the two systems. The DII COE, being the current information

system thrust, will be discussed in greater detail in the following chapter.

5. Technical Architecture Framework for Information Managers

(TAFIM)

DISA began in 1993 to publish a series of documents describing systems

development guidelines for the DOD. These documents comprise the DOD TAFIM.

TAFIM is intended to "provide guidance for the evolution of DOD technical

14

infrastructure" [DISA03, Vol. 1 p. 3]. TAFIM evolved from the many lessons that the

DOD had learned in the development of information systems like JOTS and JMCIS. It

was a giant step by the DOD to set down on paper requirements and standards for systems

developers to adhere to when designing future DOD information systems. The following

describes TAFIM's background and intent.

An information system includes support and mission-oriented applications,

computing platforms, and communications networks. The current DOD information

system technical infrastructure consists largely of stovepiped, single-purpose, and

inflexible systems that are costly to maintain. These systems reflect a multiplicity of

approaches to migrate toward open systems with each one progressing on its own path

with limited attention to interoperability.

The evolving DOD enterprise vision for information management emphasizes

integration, interoperability, flexibility, and efficiency through the development of a

common, multi-purpose, standards-based technical infrastructure. This vision requires a

new paradigm for building technical architectures and information systems that improve

the effectiveness of functional operations to include their efficiency and use of technology

throughout the DOD.

The emerging concepts for warfighting depend upon information being managed as

a department-wide resource. Joint campaigns should fully exploit the "information

differential," which is the superior access to and ability to effectively employ information

on the strategic, operational, and tactical level that advanced U.S. technologies can

provide to our forces. This information differential requires a smooth seamless interface

15

between the "foxhole" and the support base, between intelligence and operations, and

between the DOD and its suppliers. However, before today there has been no unifying

DOD information management technical architecture guidance that can satisfy these goals.

In the absence of DOD-wide guidance, the services, agencies, and CINCs have

independently developed a wide range of architectures to manage and control their

technical infrastructures. Reference models, information architectures, communications

architectures, mission architectures, and various other architectures are now used to

manage the design and development of technical infrastructures and information systems

within the services, agencies, and CINCs.

The TRM for information management was the initial effort to bring commonality

and standardization to the technical infrastructure. The TRM addresses the services and

standards needed to implement a common technical infrastructure. A single technical

architecture framework was needed to integrate these efforts and drive systems design,

acquisition, and reuse throughout the DOD.

The single technical architecture framework is the TAFTM. It provides the

DOD-wide framework to manage multiple technical architecture initiatives. It is intended

to achieve the following results:

• The use of common principles, assumptions, and terminology in the DOD
Component (services, agencies, and CINCs) technical architectures

• The definition of a single structure for the DOD technical infrastructure
components (system components) and how they are managed

• The development of information systems in accordance with common
principles to permit DOD-wide integration and interoperability

16

TAFIM provides guidance for the evolution of the DOD technical infrastructure; it

does NOT provide a specific system architecture. Rather, it provides the services,

standards, design concepts, components, and configurations that can be used to guide the

development of technical architectures that meet specific mission requirements.

TAFIM is independent of mission-specific applications and their associated data.

It introduces and promotes interoperability, portability, and scalability of DOD

information systems. TAFIM is an enterprise-level (departmental or DOD level) guide for

developing technical architectures that satisfy specific functional requirements. It also

provides an organizational-level guide and link to the enterprise level. To achieve an

integrated enterprise, it is assumed that all information systems must interoperate at some

time. Therefore, their architects and designers should use TAFIM as the basis for

developing a common target architecture to which systems can migrate, evolve, and inter-

operate. Over time, interoperability between and among the number of systems will

increase, providing users with improved services needed to achieve common functional

objectives. To achieve portability, standard interfaces will be developed and implemented.

Scalability will be developed in mission applications to accommodate flexibility in the

functionality. Proper application of TAFIM guidance can:

• Promote integration, interoperability, modularity, and flexibility

• Guide acquisition and reuse

• Speed delivery of information technology and lower its costs

TAFIM applies to information system technical architectures at all DOD

organizational levels and environments (e.g., tactical, strategic, sustaining base, interfaces

17

to weapons systems). TAFIM is mandatory for use in DOD [PAIG95]. The specific

technical architectures for missions and functions will be developed using standard

architecture guidance and development methodologies provided by the TAFIM.

D. SCOPE & ORGANIZATION

The scope of this thesis includes an analysis of the Unix and Windows NT network

environment as they apply to the TRM. Based on this evaluation, the thesis provides a

recommendation of the optimal network environment to provide a standardized

foundation for the DU COE is provided.

In order to compare Unix and Windows NT, it is imperative to analyze the DII

COE requirements. With this understanding, it is necessary to pick some criteria and

evaluate the relative performance of each operating environment. The authors feel that an

appropriate evaluation method is one that returns to the objectives stated in TAFIM.

TAFIM has eight objectives, which the authors chose to use as criteria when evaluating

the two network operating environments. Although there are numerous criteria that could

have been used, the authors feel that these eight criteria best summarize the objectives that

the DOD originally subscribed to as guidance for the evolution of the DOD technical

infrastructure. These objectives originated in TAFIM from lessons learned from the

development and failures of past DOD information systems. The eight objectives are:

1. Improve User Productivity

2. Improve Development Efficiency

3. Improve Portability and Scalability

18

4. Improve Interoperability

5. Promote Vendor Independence

6. Reduce Life Cycle Costs

7. Improve Security

8. Improve Manageability

Each of these criteria and their tradeoffs are discussed later in this thesis. Each

section of Chapter III describes a criterion as defined by TAFIM, discusses the authors'

interpretation of the criterion, discusses how Unix and Windows NT meet or do not meet

the criterion, and finally states which NOS best suits the DU COE. A conclusion will

follow with a summary of findings, solutions, and recommendations, as well as suggested

further studies.

19

20

II. DEFENSE INFORMATION INFRASTRUCTURE COMMON

OPERATING ENVIRONMENT (DU COE)

A. ANALYSIS

As described in Chapter I, the DII COE architecture was designed with the intent

of providing an innovative framework for designing and building military systems. The

resulting COE is "very simple and straightforward, but powerful in its ability to tailor a

system to meet individual site and operator requirements." [DISA04, p. 2-1] Great

importance was given in designing flexibility in the DII COE. This flexibility is needed as

different systems are designed to meet changing and diverse military needs. This flexibility

is also needed in selecting COE approved NOSs. The NOS is often considered the brain

of the information system; it facilitates communication and resource sharing throughout

the system. It provides the framework for the system. An understanding of the potential

environment is also needed when determining a NOS, because the environment determines

requirements for the NOS.

1. Environment

DII is intended to provide real time information management capabilities to all

mission areas of the DOD. It is intended to provide the warfighter with information

capabilities to achieve success. The role of the U.S. armed forces in supporting U.S.

interests is defined in the National Military Strategy (NMS). This chapter helps outline the

potential missions, tasks, and capabilities of the armed forces of the U.S. in which the DII

COE is important.

21

The NMS continues to refine two fundamental strategic concepts: overseas

presence and power projection. Both of these concepts are required to support our

national interests. These strategic concepts are achieved through accomplishing three sets

of tasks: 1) peacetime engagement, 2) deterrence and conflict aggression, and 3)

fighting and winning wars.

The NMS clearly states that the military's primary responsibility is to fight and win

wars. This goal is achievable by following certain principles, including use of decisive

force, wartime power projection, having clear objectives, fighting joint wars, countering

weapons of mass destruction, and winning the information war. Uncharacteristic of

previous NMSs is the inclusion of winning the information war as a principal of winning

wars. The NMS states that emphasis must be put on the collection, processing, and

transmission of intelligence data. "The services and combatant commands require such

fused information systems. These systems enhance our ability to dominate warfare."

[NMSG95, p. 15]

The military, as evidenced by the NMS, is realizing the importance of information

as a resource. Uncertainty in the world and increasingly changing roles for the military has

necessitated this need. Today, the military can find itself executing numerous missions,

including humanitarian operations, peacekeeping, nation assistance, counter-drug

operations, and counter-terrorism operations. So many diverse missions make the military

more reliant on communications and information services. Effectively using these

resources will improve the military's performance. The need is to define an infrastructure

to accomplish this.

22

DU COE is a framework designed with these needs in mind. As can be seen in

Figure 4, GCCS is one of many systems that implements the DII COE. It demonstrates

some of the wide ranging capabilities that the DII COE provides. GCCS is a command

and control system designed to support the warfighter. Physically, it consists of a number

of workstations distributed across a classified network. Communication mediums allow

warfighters across the network to share information, and plan, perform, and collaborate on

missions. With GCCS, warfighters are able to more effectively plan and collaborate on

functions such as force deployments, complex multi-force air tasking orders, intelligence

analysis, and maintaining current displays of force deployments, both joint and enemy.

t
S

o
C/3

■a

i

COE Based Systems

GCCS wc&\ EC/EDI Other

WKS^^^^^WS^^^^^^^S£'
"■■~M

■I

Standard Application Program Interfaces

*s|9 COE Components

■ ■■001
■

■HI P"1 ™'"*~ '",l ' 'raifflffl*IWiBl*1™i™
Operating System Services

i *^=^I1

HAV Platform
Y.

Figure 4. GCCS as a portion of a COE based system

23

The GCCS system provides a suite of capabilities across a number of mission

application areas that include the following [DISA04]:

• Manpower Requirements Analysis • Transportation Planning
• Force Planning • Resource Management
• Collaborative Mission Planning • Fuel Resource Planning
• All Source Data Fusion & Correlation • Teleconferencing
• Office Automation • Scheduling and Movement
• Logistics Support • Medical Planning
• Status of Readiness Reports • Comms and Msg Handling
• Cartographic and Imagery • Intelligence Analysis
• Display and Analysis

Additionally, the DIICOE must support other Information Systems (ISs) such as GCSS

and EC/EDI.

With a system capable of providing such diverse capabilities, the potential exists

for operators to experience information overload. Operators in such an environment

could also access information that they might not have either clearance for or a need to

know. To alleviate these potential problems, DII COE designers provided system

administrators with the ability to install only those portions, or segments, of a system that

a command and its operators need to perform their mission-related tasks. The system

administrator customizes features of the system for each user. This powerful feature

allows the capabilities of the system to be tied to the user, not the workstation. This is

very important in the shared workstation environment that DII COE based systems will

operate in. In a system such as GCCS, a yeoman can access his workstation for office

automation, while his operations department head can access classified Status of Resource

and Training Reports (SORTS) on the same machine. Each user can access only the

information that he needs to perform his mission.

24

The environment calls for the DU COE framework to be capable of providing for a

variety of missions. Not only will it serve an environment of diverse missions, but it will

be accessed by users of dramatically different needs. These characteristics put constraints

on the COE design, as well as necessitating certain needs on what operating system it will

employ.

2. Common Operating Environment Design

The need to provide so many capabilities in DOD information systems necessitated

the need for a COE. The power of the Du COE, as stated in the DII COE Integration and

Runtime Specification (I&RTS), is its ability to tailor a system to both an individual site

and an operator's requirements. Design of the COE was driven by principles, not

applications. Selection of the actual components for a particular instance of a COE

determine the functionality ofthat system. The GCCS is a COE-based C4I system.

The basic building block of the DII COE is called a segment. Segments are

defined as individual self-contained software packages that provide different functionality.

They include all software except the operating system. Both the infrastructure and

mission application software are developed as segments. This allows the ability for

individual sites to tailor the system to their needs, by enabling administrators to load only

needed segments.

Figure 5 is a diagram that shows the current DII COE. The figure depicts the

relationship between the COE, component segments, and application segments. The COE

contains building blocks such as the operating system, security services, communication

services, and a windowing system. Mission-specific application segments "plug into" the

COE via standard application program interfaces. The DII COE states the analogy that

25

the COE component segments are similar to built-in features, whereas mission application

segments are added to the COE; it is like adding additional circuit boards to a mother

board. [DISA04, p. 2-4]

26

s
o
a
o
«

• •

o

1—-wi
O E
= 0
<D £
01 n = u
» a
c Q.
- <

c
:■• .

0 f'-'
r. "8 t;

Pr::'T'

jÜ® •J a ,^j:
a ;!?!-'£
< ift;::

z c
A O ** **. «

1- i
& o Hi

-> <

c
o

hi <8
■ DM *»

a
a
<

e

— #

,2'S
<

z2

to 0
en 3
Sa

a.
<

u o w

~V

fv3>

a
o
a
a.

0)

o
s
5
O
o

fvZX

a: (5

I -

|V~^

•s ;,

8 ;

Kr~\

11 <

S~^

^-J^

uo«

£ -
|5
^S»
^§;

¥, s ' Si
S W...J

: 8- ■'
£ :
8 ;

i Q ;

N

V \

to >
Z ■,

e
E ■ V' ^

\~ - «i z
a: in
a. ■ >
s »

S z
c

V X **
W

at
a
O

£ s: v.

: u_ ""
i K ;

: O -
2

>
v A

' o
££.

X

s
ä o a z
S
X
h-
s \

i
u

= z

(V

.2 ~ ffl
»»Ü
in * ~ o.«
2 w O

CUV)
.2S«
V» «I ■""

(J)

w
Q

on
ui

00

s
o s o
a
H
W
O
U
Ö
Q
•n
<u
i. s
DC

fan

27

The API3 layer in the COE defines how segments may plug into the COE. APIs

are the only way for segments to access services provided by the COE. Therefore, all

software, GOTS or COTS, must contain standard APIs to access the COE.

Due to the complex environment discussed in the previous section, DII COE

designers originally created 19 different functional areas. This proved to be unmanageable

and communications between different workgroups became infeasible. Because of this

unmanageability, designers then decided to approach the DII COE from an architectural

perspective rather than a functional perspective. As a result, a collection of Common

Support Applications and a collection of Infrastructure Services were developed along

with some new logistics services. This new architecture is shown below in Figure 6. This

architectural approach greatly reduces the communications burden in and between

working groups. This figure does not show new logistics support services nor the

financial services (e.g., EC/EDI).4 [DISA04, p. 2-17]

3An Application Programmer Interface (API) is a programmer's guide that describes the COE
software libraries and services, and how to write software modules that interface with and use the COE
services. PISA04, Glossary]

4 For more information on the COE taxonomy, see the Architectural Design Document for the
Global Command and Control System (GCCS) Common Operating Environment (COE).

28

Common Support
Applications -Correlation

- Message Processing
; ~4^ficc AnfomatMwi 1
- Logistics Analy&is ;

Infrastructure
Services

-Mflnagement ,, '|, ■ j,, _

^| Management

Figure 6. Du COE Architecture

The primary focus of the Infrastructure Services is to provide a framework in

which the flow of data throughout the system can be distributed and managed. The

subsections under Infrastructure Services and a description include:

1. Management: The management of the data includes system security, system
^dmiaistration, and network maintenance.

2. Communications: The communications services provided a means of data
exchange with external systems.

3. Distribution and Object Management: The distribution and object management
allows true distributed processing in a client server environment.

4. Data Management: The data management portion includes relational database
management as well as file management over a distributed system.

29

5. Presentation: Presentation services is the part of infrastructure services which
controls the interaction with humans through a Graphic User Interface (GUI)
interface.

6. Workflow and Global Data Management: Workflow and global data
management is the section that works toward the management of logistical
data (e.g. LOGREQs, parts inventory, etc.)[DISA04, p. 2-18]

Infrastructure Services originated from the C4I problem domain, but the services provided

are largely independent of any particular application.

On the other hand, Common Support Applications are normally defined in a

particular problem domain. The Common Support Application area includes:

1. Alert Services: Alert services are responsible for managing alert messages
throughout the system, ranging from system administration messages like
paper jams, to mission oriented messages like incoming missile messages.

2. Correlation Services: These services provide a consistent view of the battle
space by correlating various informational inputs.

3. MCG&I: MCG&I services are responsible for displaying maps and other
images from diverse sources.

4. Message Processing Services: These services are responsible for the
distribution of military formatted messages.

5. Office Automation Services: Office automation services handle the typical
office processes such as word processing, spreadsheets, and electronic mail.

6. Logistics Analysis: Logistic analysis includes common functions for analyzing
and viewing logistical information. [DISA04, p. 2-18]

Th£ selection of the software components which meet the responsibilities outlined

in the Du COE has not been completed. In fact, it will be an ever-changing process as

needs change and new software is developed which better meets the needs of the DOD.

In order to be able to continue the process of software improvement, the COE will "...

preserve backwards compatibility so that mission applications are not abandoned just

because there is an update of the COE" [DISA04, p. 2-18]. This relatively new thought

30

process emphasizes "... incremental development and fielding to reduce the time required

to put new functionality into the hands of the warrior, while not sacrificing quality nor

incurring unreasonable program risk or cost." [DISA04, p. ii]

The COE implementation strategy has been designed so that the DOD can migrate

easily to new systems over time. This capability is commonly referred to as scalability. In

order to facilitate future scalability, the DII COE uses the Institute of Electrical and

Electronic Engineers (IEEE) POSIX P1003.0 open systems standards. POSIX is a set of

standards that define the interfaces between applications and the operating system. It is

important to note that POSIX does not define the actual implementation of the operating

systems. Portability and interoperability of applications are the critical issues, not the code

inside the operating system. [SING95, p. 2] POSIX defines a set of Application Program

Interfaces (APIs), and is discussed later in this chapter.

In order to further protect future scalability and the DII COE's ability to migrate

to new systems, the DII COE defines "public" and "private" APIs. Public APIs are APIs

that will continue to be utilized over the life of the COE. All new components should be

developed using these public APIs. The private APIs are transitional APIs to allow legacy

components to continue to work until the need for it has passed or it has been replaced

with a mor^pu1§nt version.

Figure 5 shows the current taxonomy and cross-section of the entire DU COE. It

is a layer of abstraction independent of the hardware, NOS, and mission application

software which contains a set of Common Support Applications and Infrastructure

Services. It also is the layer in which the APIs reside. The DII COE is not a vertical slice

31

such as Intuit's Quicken financial software running on a Windows family OS or NOS

using an Intel machine architecture.

B. OPERATING SYSTEM REQUIREMENTS IN THE DU COE

ENVIRONMENT

1. Operating System Requirements

The operating system has requirements placed on it due to the environment (as

described above) in which it operates. The design of the DII COE also places further

requirement on the NOS. Several of these characteristics are common features desired in

network environments today, but require more attention in the complex, multi-faceted

environment that the DII COE is designed for. These NOS characteristics include: real

time capabilities, multi-user capabilities, common user interfaces, specific security

requirements, and reliability requirements.

If a system is going to be used to gather data and present a tactical information

display, it must be a real-time system or near-real time5 (i.e., it must guarantee that certain

functions will happen within exact time constraints). A NOS must be chosen with this in

mind. NOSs based on Netware, for instance, cannot do this, and therefore cannot be used

for real-timj^ystöms [GASK95, p. 1086].

5 Whether a system is real-time or not depends on the data being delivered. A JOTS screen
might be considered real-time if it is updated every second while a fire-control system might need new
information every l/100th of a second to be real-time. A tactical support real-time type system is our
baseline in this discussion.

32

This real-time tasking can be accomplished in many ways. Some variants of Unix,

as well as Windows NT, for instance, do this by what is called preemptive scheduling or

preemptive multitasking. Preemptive scheduling is a sophisticated way to describe how a

system goes about setting priorities. This allows the system to schedule jobs to begin at

set time intervals or at set conditions, no matter what other set of system functions are

active. [FEIB95, p. 616] DU COE implementations will require this type of capability.

Another need for the DII COE NOS is for multi-user capabilities. Many different

people on board a ship might need access to the same database at the same time. The

Combat Information Center (CIC) and the bridge might both need the information

contained in the JOTS database at the same time. Also, the supply officer might be

running an inventory check at the same time an order is being placed for a new part.

These examples all potentially exist in a typical DII COE implementation and necessitate

the need for the NOS to be able to support more than one user at a time. A distributed

database is also a direct derivative of multiple operators using the same databases from

different locations.

Another multi-user issue encountered on board ship is the simple fact that every

user does not have his own personal computer. Logins and passwords must be present so

that users äsydlfwed access only to information that should be available to them (e.g., e-

mail accounts, etc.).

This requirement for multi-user availability necessitates the need for the system to

have certain security requirements. DII COE systems are designed with the idea that there

will be multiple users with multiple needs. These users should only be allowed to access

information that they need to complete their tasks. The NOS needs to be able to support

33

some type of access control. Other security features would also be needed, including

audit trails.

A common set of user interfaces (UI) is also a requirement of the NOS. With the

ever changing personnel in the ship's company and the possibility personnel rotating

between watchstations, a common UI is essential. On-the-job training is the norm,

especially in the surface community, so intuitive UIs are essential to reduce lost

productivity. If all the UIs on deploying units and shore commands are the same, or at

least very similar, then productivity is increased.

Availability and reliability are important in almost all environments, but especially

in one where a multitude of programs are running at the same time on the network. NOSs

must be able to be relied on at all times for mission-critical information. A supply program

crashing while communicating with a remote server should not interfere with a tactical

support program's operation.

Another important function that is required of the NOS is ease of network

maintenance. Networks are becoming increasingly complex and the DOD's reliance on

them is increasing everyday. Currently, however, the DON does not have billets on ships

(and few, if any, on small shore units) to perform network maintenance tasks. In most

cases* it is a collateral duty. If this continues to be the case, then the OS must

automatically pefibrm such tasks as backups, troubleshooting, etc., to relieve the burden

of the network manager.

2. Hardware Requirement

Hardware requirements of a typical DU COE system will not only be determined

by required functionality, but also by the type of NOS implemented. Traditionally, the

34

amount of processing needed to perform some of the tasks listed in the DU COE has been

performed by Unix workstations, minicomputers, and even mainframes (SNAP, SNAP II).

In today's environment, however, this paradigm is changing as processing power gets

greater while the container gets smaller and cheaper. The DII COE does list some

minimums for both a Unix style workstation as well as a PC. Precise hardware

requirements in terms of memory, disk space, etc. is a function of whether the workstation

is a database server or client workstation, and whether the workstation is standalone or on

a network. [DISA04, p. A-2]

A current implementation of the DII COE, GCCS, is designed to run on the HP

700 Series and Sparc Series workstations. The Navy's TAC-4 contract was awarded to

Hewlett-Packard. The minimum configuration for 700 series computer (The HP 9000

Model 712 low-cost Workstation) on the TAC-4 contract comes with:

• 17- or 19-inch pedestal-mount color monitor

• 16 MB -128 MB of ECC RAM

• 1 GB or 2 GB hard internal disk drives (SE-SCSI)

• One internal 3.5-inch floppy disk drive

• General I/O expansion slot

ÜP^B Keyboard plus mouse or trackball

• Unix operating system software

• DOS Windowing/Networking Environment

The HP Model 712 also has one integrated LAN interface (IEEE 802.3/Ethernet).

Other optional interfaces include a second serial port (RS-232C), an X.25 port, a second

monitor port, and a second LAN AUI port.

35

Additional performance characteristics for the Model 712/80 (the minimal TAC-4

RISC processor platform) include:

• Processor PA7100LC

• Speed 80MHz

• SPECint92 84-3

• SPECfp92 122-3

• Xmark93 8-2

• Graphics Int. Color

• Exp. Slots * general, 1 Teleshare [HPAC96]

The requirements for a PC based DU COE system appear to be based more on

legacy systems than their workstation equivalents. The DII COE does state that "all [PC]

hardware shall be NT-compliant" [DISA04, p. G-10]. The DII COE I&RTS lists the

minimum PC workstation requirements as:

• 66 MHz 386 (66 MHz 486 recommended for Windows 95, 90 MHz
Pentium recommended for Windows NT)

• 8 MB RAM for Windows 95 (16 MB recommended), 16 MB RAM for
Windows NT (32 MB recommended)

• 200 MB disk space required (500 MB recommended)

#*" «§. 3.5" floppy diskette drive

• LAN Interface card required to access Unix applications

• VGA or SVGA graphics card compatible with Windows NT, and
capable of minimum 640x480 graphics in 256 colors

15" SVGA Monitor (17" recommended)

36

Additionally, the DU COE recommends the following equipment to be present in

at least enough machines to meet the needs of the individual units:

• 2x speed CD ROM (4x recommended)

• 16-bit Soundblaster® compatible card

• Tape drive for data archival

• HP Laserjet III® compatible laser printer

• Color printer for briefing slides6

Over the last decade, most commands have invested heavily in the PC revolution.

With this tremendous legacy system in place, it would be a monumental task to switch

over to a Unix-based network. Implications of making such a decision must first be

considered when selecting a NOS. Some of these problems include, but are not limited to:

applications (such as JOPES) not being available to both platforms, user resistance,

switching to a different NOS, and commercial alternatives to GCCS software packages.

The minimum requirements set out in the DII COE I&RTS appear to be slightly

dated, especially when describing minimum PC requirements. Model 386 machines are

rarely acquired anymore, certainly not by large corporations. However, it should be noted

that if a computer is needed only for word processing, a 386 machine might be considered

sufficient fS||ghe|hear term. This is only valid if a machine only has that one purpose, but

as we noted above, in a multi-user environment that the DII COE is expected to perform,

single use computers will not suffice. Legacy systems can be left in place if there is no

6 Memory requirements stated here are the minimum for the kernel COE. 32 MB is the
minimum for most mission applications; that is for most mission applications not provided by commercial
office automation products.

37

replacement; it is powerful enough to be connected without major alterations or

maintenance by the network manager, and it is still functional.

The minimum configuration listed above should not be thought of as an entry

system to purchase, only as a stop-gap backwards-compatible interim solution. The

minimum configuration should be determined by the unit's workload (server/workstation)

and should be within one generation of the latest technology (the Pentium 60 MHz

machine is a good example of "old" technology that could be used as a normal

configuration). The typical introduction lifecycle of CPUs is 18 months to two years.

This means that if you purchase a computer today that is a generation old, it will be two to

four generations old after just one tour of duty in the military (three or four years), hard to

find support for, hard to purchase software for, and a general time-sink.

C. DU COE OBJECTIVES AND STANDARDIZATION

1. Objectives

In order to meet the operational needs of the DII COE environment, DISA

outlines several objectives. The objectives of the DII COE as defined by DISA are:

• Commonalty: Develop a common core of software that will form the
foundation for joint systems, initially for C4I and logistics systems.

• Reusability Develop a common core of software that is highly reusable to
leverage the investment already made in software development across the
services and agencies.

• Standardization: Reduce program development costs through adherence to
industry standards. This includes use of commercially available software
components whenever possible.

Engineering Base: Through standardization and an open architecture, establish
a large base of trained software/systems engineers.

•

38

• Training: Reduce operator training costs and improve operator productivity
through enforcement of a uniform human-machine interface, commonalty of
training documentation, and a consistent "look and feel."

• Interoperability: Increase interoperability through common software and
consistent system operation.

• Scalability: Through use of the segment concept and the COE architectural
infrastructure, improve system scalability so that COE-based systems will
operate with the minimum hardware resources required.

•

•

Portability: Increase portability through the use of open systems concepts and
standards. This also promotes vendor independence for both hardware and
software.

Security: Improve system security.

Testing: Reduce testing costs because common software can be tested and
validated once and then applied to many applications.

These objectives are consistent with those stated in TAFIM. The DII COE states

that it will migrate to full compliance with the TAFIM standards profile. The philosophy

of the DII COE is that the best way of achieving these objectives is by migrating to open

systems.

2. Open Systems

The Gartner Group defines open systems as,

o^ ,.^a compliant implementation of an evolving set of vendor-neutral
spe*|§|fciöns for interfaces, services and protocols, and formats which is
designed ^o enable the configuration, operation, and substitution of the
whole system, or parts of the system in a layered systems architecture with
applications and/or its components with equally compliant
implementations, preferably available from many vendors. [DUNP94, p.
54]

This is just one of many industry definitions of open systems. Most of the

definitions of open systems include the idea that open systems are systems that are

39

portable, interoperable, and adhering to international standards. Portability is the ability to

run an application on any systems. It is the ability to take an application from one system

and run it on another without having to modify the application. Portability makes it easier

to move both work and applications to less expensive or higher capable hardware

platforms that could be obtained from a number of different vendors. This ability to port

applications reduces the cost for the end user.

Interoperability is the ability to share data across heterogeneous data systems. It

also means that the components from different vendors will work together in a system and

support whatever application is being run over the entire system. In an interoperable

system, different hardware platforms will be connected and be able to communicate. With

interoperability, a user will be able to access data anywhere on the network without having

to worry where the data is.

An open systems architecture is built from a set of vendor-independent,

internationally recognized and established standards, as well as a standard application

platform. In an ideal world, open systems would mean that a user would be able to take

components and plug and play them into a system of their choice, just like a consumer

would when purchasing a stereo system. In this scenario, a user would be able to mix and

match comjjpnenis from multiple vendors according to his desires. Price and performance

could be criteria that a user would rely on when considering purchasing components.

Vendor independence is an underlying theme of open systems. Independence can be

achieved by developing standards that would define the way components from different

vendors plug and play with each other.

40

Normally standards are defined by industry standards, or de facto standards.

Examples of the more popular standards organizations that define official industry

standards are IEEE and the International Standards Organization (ISO). These bodies

often publish standards or specifications on computer interfaces. A de facto standard is a

standard that has occurred due to market volume and widespread market acceptance.

MS-DOS would be an example of a de facto standard.

Part of the problem in defining a standard is that calling a product standard is

common, particularly among vendors, without there really being an industry standard. A

product can be measured if it conforms to some standard by its compliance to two

measures. The first is whether the product complies with a published interface

specification. This can amount to how a software product complies with a benchmark, or

an actual compliance test. The second measure is how many instances of the standard

exist, or how many instances of the product using the standard in question actually exist.

Another way of measuring "openness" is based on commercial practices.

Openness is also associated with how easily a technology is made available to the market,

and at what cost. If a company freely documents its software, source code, or even its

hardware design, it is a more open company than one that has expensive or a restrictive

licensing pfjöjof; An open standard is one that is based on cost rather than value. For

many years, and perhaps still today, Unix was considered by many to be an open standard.

Unix was considered open because it could be licensed by anyone who purchased it during

its developing days. Unix source code was also readily available. This led to the

development of many Unix environments. One sign of an open standard is one in which

you can point to more than one implementation of it. Unix is one example of an operating

41

system that has this characteristic. This is contrary to proprietary operating systems such

as Windows, MacOS, and OS/2. The future developments of these operating systems are

controlled by a single company. When specifications are openly available to everyone,

they are open. When they are protected and private, they are proprietary. [DUNP94, p.

22-23]

Standards then are at the basis of the concept of open systems. They are formed

to help eliminate confusion and achieve consensus among the many interests in the

computer industry. In the government, as well as private industry, standards are important

to those responsible for designing information systems of the future. Standards are

intended to promote the following:

• Lower-cost, higher quality products and services.

• Open interfaces that increase the potential for interoperability.

• Multiple sources for components - a form of insurance.

• A common set of benchmarks for evaluating alternatives.

• A greater selection of common solution elements from multiple vendors.

• The potential to exploit interoperability at various levels within the system
architecture. [DUNP94, p. 25]

Achkving open systems will require organizations (including the government) to

continue, or start-adhering to some set of agreed upon standards. By doing so, there will

be an environment that is multivendor, competitive, and multi-sourced.

Standards organizations, like the IEEE, are currently playing the role of publishing

uniform operating standards for open systems. The IEEE and other organizations have

concentrated on program interfaces to support some degree of application portability.

42

Typically, a lowest common denominator is agreed upon as a standard interface. This

lowest common denominator provides the minimum amount of functionality, and vendors

in turn embellish this standard to meet the needs of the market place. While the standards

that are published are often the minimum standards, they provide a stability for

organizations trying to achieve open systems, as well as a litmus test for measuring the

compliance of vendors with open systems. Standardization organizations will play a vital

role in defining open systems in the future. [KAMA94, p. 12]

3. Open Systems in the DOD

The role of open systems in the development of information systems dates back to

1992. In a memorandum dated February 12, 1992, the former Director of Defense

Information, Paul Strassmann stated, "Implementation of open systems is essential to

reducing systems costs, improving information sharing and interoperability, streamlining

acquisition times, and enabling the other improvements envisioned through the application

of corporate information management." [STRA92] Strassmann's directive states that all

new systems development and major modernization plans are required to use the DOD's

TRM as the guideline to select appropriate standards for implementation and future

systems planning,

Ac^iSing to the TRM, a common open systems environment will provide a basis

for the development of common applications and facilitate software reuse. Open systems

will promote portable applications, which will allow activities to be able to upgrade their

hardware base with technology with minimal impact on operations. Interoperability will

be improved by implementing a common infrastructure through standardization. Vendor

independence will occur by acquiring only interchangeable components and supporting

43

non-proprietary specifications. The TRM states that by applying all of these principles,

there will be a reduction in life cycle costs. It also states that this cost will be reduced by

the eventual replacement of stovepipe systems with interconnected open systems. These

interconnected systems will be able to share information and will reduce the redundancy

and data duplication in current systems. [DISA03, Vol. 2 p. 2-1]

The goal of the standards profile presented in the TRM is to have DOD

information systems achieve an open systems environment. The DOD selected the set of

standards based on several criteria, including level of consensus, product availability,

completeness, maturity, stability, de facto usage, and product limitations. [DISA03, Vol. 2

p. 3-1] As mentioned, the intent of the Du COE is to be fully compliant with the

standards profile of TAFIM's TRM. GCCS, fully TAFIM compliant, subscribes to many

of the applicable standards in the TRM. Appendix A, the GCCS COE as-built standards

profile, shows several of the standards adopted by GCCS. The list shows the dependence

on standards of different service areas of GCCS. It demonstrates the DOD's reliance on

standards in the development of DII COE based systems.

4. DH COE/TAFIM defined standards

As discussed above, in order for an open system to be achieved, a set of standards

must be agjied u|on. POSK is one such standard that the DOD has adopted and is at the

heart of the DII COE. Some other prominent standards include communications

standards (TCP/IP, FTP) and GUI standards (MOTIF).

44

a. POSIX requirements

In defining the standards of the DOD common architecture, the TRM

adopts the framework of the IEEE POSIX P 1003.0 Working Group. POSIX stands for

Portable Operating System Interface for Computing Environments. The last letter X

denotes POSIX Unix origins. POSIX refers collectively to a number of standards

specifications. It is an interface standard for portable operating systems being developed

by a number of committees organized by the EEEE. POSIX 1003.1 details only basic

operating services.

The goal of these committees is to improve industry-wide portability and

interoperability. There are two types of standard interfaces specified in POSIX: the APIs,

and the external environment interfaces (EEIs). APIs are the procedure calls made to the

application platform. The application platform is the computer in which the application

platform is running, as well as the OS. APIs provide for source code portability. The EEI

refers to external entities with which the application platform exchanges information. This

could include the end-user, and physical devices such as terminals, printers, and networks.

EEIs generally are in the form of communication protocols and provide for

interoperability. POSIX is like a list of standard commands that an OS should be able to

perform in|pg1|en manner when called upon to do so by an application program. If

software applications use these calls (and no non-standard ones), then it should behave the

same on any NOS that supports these calls (i.e., is POSIX compliant, assuming the same

version of POSIX compliance is adhered to). This would eliminate the need for software

developers to produce several different versions of the same application to accommodate

different operating systems.

45

Portability and interoperability standards like those listed in POSIX,

however, are not sufficient for a complete open systems environment. POSIX offers a

building block that was chosen by the DOD, and subsequently complimented with several

other computing standards.

b. Other standards

POSIX alone does not guarantee complete open system concepts like

interoperability and portability. TAFIM relies on a number of other standards to help

define other information system service areas. These standards include:

• ADA 95

• Motif

• TCP/IP

• X.400/X.500

• 802.2/802.3/802.4/802.5

These standards help further define features that are not covered by

POSIX. The X-Windows system protocol is a good example of how this is done. X-

Windows "specifies how graphic primitives can be communicated between an application

program and gfaphics software." The interoperability between POSIX compliant

platforms äoes KOT guarantee that source code will run on two different machines

running POSIX compliant NOSs, because the two system might use different library

functions to produce the X-Window protocols. [KUHN91, p. 37]

It is important to note that the DII COE was developed by DISA, and thus

requirements such as those for POSIX were included because of DISA's belief that this

46

was the best method to achieve open systems in the DOD. We have adopted DISA's

guide for the DII COE in our evaluation of how the NOS fills the needs of the

infrastructure that DOD will put in place in the future.

47

48

III. TECHNICAL ARCHITECTURE FRAMEWORK FOR
INFORMATION MANAGEMENT (TAFIM) OBJECTIVES

A. IMPROVE USER PRODUCTIVITY

1. TAFEVFs definition of the objective

TAFIM's definition of improving user productivity will be realized by applying the

following principles:

• Consistent User Interface. A consistent user interface will ensure that
all user accessible functions and services will appear and behave in a
similar, predictable fashion regardless of application or site. This has
the benefit of simplifying training, facilitating the development of future
applications, improving ease of use across applications, and promoting
application portability.

• Integrated Applications. Applications available to the user will
behave in a logically consistent manner across user environments.
Support applications, such as office automation and electronic mail,
will be used as an integrated set with mission area specific applications.

• Data Sharing. Databases will be shared across DOD in the context of
security and operational considerations. Concepts and tools that
promote data sharing include adherence to standard database
development rules, the use of DOD data dictionary and software reuse
libraries, and strong DOD commitment to resource sharing. [DISA03,
Vol. 2 p. 2-1]

2. 3|pIij|erpretation of objective

a. Consistent user interface

We interpret TAFIM's objective to improve user productivity through the

use of a consistent user interface as providing a graphic user interface (GUI) that users are

comfortable and familiar with. We say graphic because that is what the majority of DOD

49

personnel are using today, and the technology for providing GUIs is relatively mature.

However, improved technology has introduced voice-activated software, which has the

potential to become an industry trend in the fixture, and may have several productivity

benefits over GUIs. A consistent user interface will provide users with the familiarity and

"look and feel" among the NOS and its applications. This consistent "look and feel"

facilitates transitioning to new or upgraded versions of the NOS with a relatively flat

learning curve, thereby reducing training costs associated with that transition. A

consistent user interface provides a common set of pull-down menus, common toolbars,

and buttons. To the extent possible, the user interface operates in the same consistent

manner regardless of application. Familiarity of system utilities, such as a file or print

manager and fast easy access to online help, is also essential.

b. Integrated applications

TAFIM's objective to improve user productivity by integrating applications

provides users with a set of software packages capable of meeting all their business,

professional, and tactical support needs. Again, consistency among the applications in

user interface, communications protocols, and integrated use of applications is an essential

element in improving user productivity. The NOS provides the common foundation and

vehicle foif integrating applications. For example, being able to use database and

spreadsheet data together in a word processing document, or being able to share

document data in a presentation graphics application, typifies the concept of integrating

applications. Software integration (e.g., a suite of integrated applications) provides the

user with a familiar and consistent operating environment across a wide spectrum of

50

programs (database, spreadsheet, word processing, management information systems,

etc.) that will improve user productivity.

The NOS can and should provide mechanisms for applications to

communicate (e.g., share data) between each other. These mechanisms will permit

application integration among a variety of vendors, and not necessarily be limited to a

single vendor's suite of applications.

c. Data sharing

Establishing standardization for data sharing improves user productivity by

creating, maintaining, and updating both centralized and distributed databases, which

DOD users can access and utilize. For administrative uses, military career and personnel

data can be maintained at a centralized database. Distributed access of information should

be accessible by authorized personnel maintaining and using those records. Service

member career information (e.g., pay records, promotion information, medical and dental

records, etc.) can be accessed, downloaded, and updated, and remains available even when

personnel change jobs or location.

For tactical support and intelligence support applications, database

architecture becomes more complicated, but must conform conceptually to both

centralizedjanä distributed database models. Data for tactical systems must be centralized

at the local command, where sensors can immediately update information, and then local

users can immediately retrieve it. For shore-based analyst personnel, data can be

distributed throughout several national level data centers where real-time access to data is

not as essential. Through consistent and standardized data sharing techniques provided by

51

the DBMS, data centers can receive data updates from theater units on a periodic basis, as

well as share national level information to theater units as requested.

At the DBMS level, data sharing is achieved through the use of

standardized data formats. While standardizing databases on a common DOD-wide data

dictionary is essential to sharing data through a database management system (DBMS),

the NOS must also implement data handling controls (packet size, parity checking, etc.) to

share data across the WAN and across multiple applications in a standard predefined way.

This way the DBMS, with the support of the NOS, can consistently and efficiently pass

data between applications and systems, both local and remote.

Establishing common data sharing mechanisms at the DBMS level, as

well as the NOS level, are key elements in improving user productivity. Data sharing will

save time in database entry, improve maintenance of numerous databases, increase

information exchange across applications, and improve the quality and content of the

information. At the NOS level, implementing a consistent data sharing mechanism allows

data to be efficiently exchanged between locations.

The data sharing element of improving user productivity is closely tied

to developing integrated applications and improving interoperability, which will be

discussed Ölaterlsections of this chapter. It is expected that most users would have been

exposed to the Microsoft Office application suite or the Corel Wordperfect Suite software

package, which both share data seamlessly between word processors, databases,

presentations graphics, and spreadsheets. In tactical support applications, equivalent data

sharing mechanisms allow applications to utilize data from one application, say a

standardized mapping program (Chart Service), with the JMCIS track file. This provides

52

a geographic display of a tactical area overlaid with the current positions of vessels at sea.

Incorporating the data sharing mechanism into the NOS provides this service at the

foundation of the information system architecture and ensures compatibility across the

information system.

3. Analysis of the Unix architecture

The initial work on the Unix operating environment began in 1969 to provide an

OS that would support programming research. The timing and purpose for the original

development of Unix had a strong influence on the design of the Unix NOS architecture.

The original variant of Unix was owned by AT&T, but due to antitrust restrictions, AT&T

was forced to place Unix onto the "freeware" market. AT&T Unix was used primarily at

universities on minicomputers and mainframes. Over the years, Unix has grown in size as

well as in its repertory of tools and utilities, and has spawned numerous variants of the

original Unix. Throughout the years, university research and research projects have

developed new variants, and modifications of the original Unix. In many respects, this

evolution of Unix in the education and research environments forged many improvements

over early variants resulting in increased system performance, optimization of the OS

kernel, interfaces, etc. This has resulted in a Unix OS which today is a widely used time

sharing sysfitri i>r use in both commercial and DOD applications, and is currently the

basis for the DII COE. This evolution has, however, resulted in significant

incompatibilities between different Unix variants. The Unix variants, HP and Solaris, are

the only approved variants of the Unix NOS for the DII COE. Figure 7 depicts the

evolution of the Unix operating environment.

53

Figure 7. Unix Evolution [MICR03]

a. The user interface

While the objectives in this chapter examine the architecture of HP-UX

v9.01 as the choice of NOS for the Du COE, it is important to recognize that Unix is not

"Unix". Keeping this in mind, the native user interface to HP-UX v9.01 is the command

line interface similar to Microsoft's Disk Operating System (DOS). While this user

interface does not achieve the intent of the TAFIM objective for improving user

productivity through the use of a GUI, most variants of Unix, specifically HP-UX v9.01,

support the^ise of a GUI windowing system based on the X-Window system.

The X-Window system, like Unix, comes in many "flavors". The Du COE

specifies Motif, from the Open Software Foundation (OSF) as the standard windowing

system. Motif is a standard for providing the Du COE running the Unix NOS with a

GUI, and meets the requirements of TAFIM. While the X-Window system and Motif

standard provide the specifications for implementation of the GUI, DOD must adopt one

54

or more proprietary Motif compliant X-Windowing GUIs, much like DOD must adopt a

proprietary NOS which is POSIX compliant.

The X-Window/Motif GUI is installed and operates much the same way

that Microsoft Windows v3.1 operates on top of DOS in most PCs. Similarly,

applications designed to run in a GUI environment must run on a compatible Unix NOS

running the X-Windows GUI user interface. Compatibility between Unix NOSs is limited

to those which comply with the POSIX/IEEE 1003.1 open systems standard (discussed

later). X-Windows includes a separate GUI-oriented Application Program Interface

(API), which is defined by the Motif standard and acts as an abstract interface to the

services and protocols offered by the Unix NOS through a set of function calls.

Applications use the function calls available in the X-Window interface to gain access to

the OS's services in a graphic environment instead of the Unix command line interface

[NORT91]. It should be noted, however, that while Motif and the X-Window GUI are

POSIX compliant, application programs running on the Motif GUI must be programmed

using the POSIX API and the Motif GUI API in order to function on a specific NOS and

GUI. This is a requirement because the POSIX API defines how applications interact with

the NOS, and the GUI API specifies how the NOS interacts with the display system.

Ä.SMotif is a widely-accepted set of user interface guidelines developed by the

OSF around 1989, which specifies how an X-Window system application should "look

and feel." OSF/Motif includes the Motif Style Guide specifications, which details how a

Motif user interface should look and behave to be "Motif compliant."

The Motifs style guide allows each workstation using the Unix NOS/X-

Window GUI to be configured to a wide variety of operating conditions, including low

55

light, blue light, red light, normal light, and outdoor environments. This is important

because it supports the wide spectrum of end user needs discussed in Chapter II. Motif

conformance allows users to customize their desktop and workspace for individual

preferences.

b. Application integration

In support of TAFEVTs goal of integrating applications, the Unix operating

environment provides the platform upon which development of JMCIS, GCCS, and other

service-equivalent information systems can be incorporated into the DII. Integration of

tactical support applications is achieved by assigning responsibility to services and

software development organizations to particular software segments of the total

information system.

The key to this multiple department development program is adherence to

a common set of specifications, which permits interoperability. The Unix operating

environment, being POSIX compliant, provides the POSIX API, which gives developers

the ability to code their respective segments to integrate into the overall information

system. This integration is demonstrated by the GCCS running the JMCIS segment. In

execution, JMCIS calls on data from the JMCIS maritime track database, and overlays

track positions and data over the Army's Chart Service, which provides the "map" of the

desired area. While program development must include code that allows the integration of

applications, it must be provided with a vehicle. This vehicle is the Unix NOS, which acts

as the foundation (a consistent base operating environment) of the information system to

integrate applications in a common environment.

56

Unix provides the mechanisms for application integration and data sharing

through its core architecture. Figure 8 shows the Unix core architecture. Data sharing

between applications and processes is invoked in the Unix operating environment through

interprocess communication (IPC) routines. The Unix system provides the following

mechanisms for performing BPC:

Unnamed and named pipes.

Shared memory

Message queues.

Semaphores

Signals

• Sleep and wakeup calls

Figiinr© 8. Umax

57

While the architecture for each of these mechanisms resides in different

modules of the NOS, they all reside within the Unix NOS, and operate together to provide

data sharing between applications. A detailed description of how each of these

mechanisms operate is not essential in understanding that Unix provides data sharing

services. However, the reference section contains sources which describe each

mechanism's operation in detail. The key concept here is that the Unix NOS provides

several EPC mechanisms that allow programmers to integrate applications running on the

Unix NOS, as well as providing the vehicle for data to be shared between applications

both locally and remotely [ANDL90]. While the Unix implementation of data sharing is

adequate, it does not offer the rich interaction of more recent data sharing technologies.

4. Analysis of the Windows NT architecture

Windows NT is a NOS which was first introduced into the commercial market in

1991. Since then, Windows NT has undergone two major upgrades, which has kept pace

with the rapidly changing information technology industry. With the release of Windows

NT version 3.51, and the recent release of version 4.0, Microsoft Windows NT has

arguably become the most interoperable NOS in the market today.

Windows NT was not the first NOS designed to exist on both local area and wide

area netwcJii|:|ut it was, unlike Unix and other OSs, built from the ground up with

connectivity in mind. The Windows NT design began with two sets of requirements:

market and design. Under the market requirements, Windows NT provides:

• Portability across families of processors, such as the Intel 80X86 and Pentium
lines

• Portability across different processor architectures, such as CISC and RISC

58

• Transparent support for single-processor and multiprocessor computers

• Support for distributed computing

• Standards compliance, such as POSIX

• Certifiable security, such as C2 and F-C2, E3

Additionally, the Microsoft development team established the following design

goals for Windows NT:

• Extensibility

• Portability

• Reliability

• Robustness

• Performance

• Compatibility

All of these requirements and goals help make Windows NT interoperable with a

wide range of legacy systems in the market place, government, and the home, as well as

provide consistency and commonality. [FEIB95] Figure 9 describes the Windows NT

architecture.

59

Win32 :Wän1@ : DOS ^OS/2 : POSIX
client : : dient client : client client

processes processes processes processes processes

. . Win16 app
 :■ ; •■■ . ■■ i .—,.._» ■ ■ . iim-seeg^- 1

IS'S'^Os, • ■ 1
-;^"' -j WiniSapp; •'- ' fSMtHtf ''" ': ■ "j

:~:^::': ■■ : ""\:::^:"T:.". • """■"/■:....■'; ' i?Kr'>5£feSräv 1

:-,i.-.-;.* . .ii\'ß<§£lt. \
■■':■■;.-'■ '.<- , '- ^MM^I V ':

Ring 3

Windows NT Executive

Piö^S'SSiPirfe'S^^- ^:;:::-'::iv::./-:::V:~''i:'W^l^^M^W^^:\''■'.'"':"■■; ;''!';;■•'■!■' ;'■;,:
\'. •: ■ 1

Hardware abstraction layer

Figure 9. Windows NT Architecture

a. te user uce

The Windows family of OSs has incorporated a graphical user interfaces

(GUI) into all of its products. The Windows GUI has changed over the years, culminating

in the new user interface first introduced in Windows 95, and incorporated into the

recently released Windows NT version 4.0. Design changes to the Windows NT GUI are

the result of Microsoft's visual design group, tasked with making the Windows GUI look

and behave in a consistent and similar manner across applications [KTNG94]. The visual

design group at Microsoft is chartered to make the Windows NT GUI more document-

centric in order to enhance end user productivity.7 A document-centric approach means

7 The document-centric appearance was first introduced by Apple Computer Corporation in their
line of Macintosh operating systems.

60

that users concern themselves only with documents and not with program files. This

makes the NOS responsible for maintaining the relationship between data of a particular

format and the application that can manipulate the data.

A user who is unfamiliar with the details of a particular operation or

application may first seek visual guidance (looking for cues such as dialog boxes, shaded

pull-down menus, and help menus), while navigating through a sequence of actions aimed

at providing the desired result. The Windows GUI tends to reduce the learning task

associated with a new application as compared with character oriented OSs like DOS, by

presenting access to many standard operations in the same manner. While this concept is

not much different than the X-Window/Motif GUI found on Unix systems, the Windows

NT visual design team works specifically to optimize the following GUI characteristics:

• Consistency. Does the user always do the same operation in the same way?
Does the user gain access to similar operations using the same keyboard or
mouse inputs, guided by similar visual cues?

• Usability. Does the interface allow the user to do simple operations simply
and complex operations within a reasonable number of operations? Forcing
the user to go through awkward or obscure input sequences leads to
frustration and ineffective use of the system.

• Easily Learned. Is every operation simple enough to be remembered easily?
What the user learns by mastering one operation should be transferable to
pthetoperations.

• intuitive. Is the interface so obvious that little or no training or
documentation is necessary for the user to make full use of it? This aspect of a
GUI is the holy grail for interface designers.

• Extensible. As hardware gets better and faster - for example, as common
screen displays achieve higher resolution or new pointing devices appear - can
the interface grow to accommodate them? Similarly, as new application
categories become popular, does the user interface remain valid?

61

• Attractive. Does the screen look good? An ugly or overpopulated screen will
deter the user and reduce the overall effectiveness of the interface [KING94].

As with the X-Window/Motif system used by Unix, the Windows NT GUI

can be customized and configured to conform to the operational conditions of the current

environments defined in chapter II (low light, red light, etc.). Additionally, given

Windows NT's POSIX compliance (discussed later), it is possible to run the X-

Window/Motif GUI from within the Windows NT NOS to access and run Unix

applications [PARA96]. Finally, the Windows NT GUI API is incorporated into the

native Win32 API specification, thus integrating the GUI and OS APIs into a single

specification, instead of the two API specifications required by the Unix POSIX and Motif

GUI standards.

b. Application integration

Windows NT supports integrated applications. Numerous integrated

applications exist in the market today that are designed for the Windows NT NOS. As

stated above, the preponderance of PCs and Windows family of OSs offers a significantly

greater number of integrated applications specifically targeted for home users and

corporate users. Microsoft Office suite and Corel Wordperfect suite demonstrate the

maturity anneals of integration across applications in their respective suites. Windows

NT provides the same consistent base operating environment as the Unix NOS with which

applications can be integrated.

62

c. Data sharing

Microsoft's strategy for integrating applications and improving cross-

application data sharing is built around a technology called Object Linking and Embedding

(OLE). OLE provides the data sharing and IPC to improve cross application functionality

and user productivity. With OLE compliant applications, users get the following

capabilities:

• OLE Documents: OLE documents improve the process of creating
documents and the content of business documents. OLE documents can
contain any type of information, including text, spreadsheet tables, pictures,
graphics, video, sound, or any information object. The information contained
in an OLE document can be created using any supporting OLE-enabled
application, such as a spreadsheet application, graphics application, or
multimedia application. These applications can be supplied by different
software vendors who support OLE, because OLE components work together.
OLE documents not only enhance user productivity, they also enable users to
communicate their ideas more effectively. As a user edits an OLE document
that contains different types of information, the specific tools necessary to edit
the different types of information are automatically made available to the user
within the context of the document. This is called Visual Editing. With OLE
Linking, a document can contain information that maintains a data link to
another document.

•

•

OLE Drag and Drop: OLE drag and drop allows users to directly exchange
information between applications, without having to save files to disk or
converting information to different formats. For instance, a user can point to
an embedded spreadsheet in a document and drag it over to another document
in another application. By making data exchange graphical and intuitive, users

?GalJfcrease productivity.

©LTS^Controls: OLE controls are OLE-enabled software components that
users can purchase to extend and enhance an application's functionality. Users
can utilize OLE controls in custom or off-the-shelf OLE-enabled applications.
Most popular development environments, including the next version of the
Microsoft Visual Basic programming system, will support OLE controls as an
efficient means to build business applications using high-quality, prefabricated
software components.

OLE Automation: Automation enables applications to provide command sets
that operate within and across applications. For example, a user can invoke a

63

command from a word-processing program that sorts a range of cells in a
spreadsheet created by a different application. [PARA96]

Incorporating OLE technology into the OS and applications is not without

disadvantages. OLE support to an application is an extremely complex engineering

project. New development tools and methods will ultimately reduce the complexity and

cost of OLE implementation [KING94], but the near-term outlook for incorporating OLE

technology is that it is likely to complicate and prolong application development, as well

as reduce initial development efficiency. This will be discussed in detail in the next

objective.

Windows NT also supports mechanisms in its core architecture similar to

those found in the Unix core architecture. This support includes shared memory, pipes,

semaphores, and message queues [CUST93]. While their implementation in the NOS

architecture is different than its Unix counterpart, they serve to provide the necessary IPC

between applications to permit data sharing, even when OLE technology is not

implemented in the application.

5. Summary of findings

Both the Unix and Windows NT NOSs provide several mechanisms which work to

improve user productivity. Although neither NOS provides significantly better

mechanisms to achieve the user productivity tenets that TAFIM outlines, we believe that

Windows NT employs a more popular user interface and a more robust method for IPC.

This makes it a better choice of NOS for improving user productivity. Specific summaries

for each of the tenets of the objective are provided.

64

a. The user interface

From «he perspective that Windows NT achieves the user interface

characteristics described above, it enhances user productivity as weh as, and In some

respects better than, the X-Window/Motif system of Unix. Wbi, Unix and Windows NT

both incorporate a GUT, Windows NT has the added benefit of its GUI being bui„-in to

the NOS. The Unix GUI runs as a third party she.! on top of the Unix characterised

NOS Since improving user productivity is partially based on how familiar «he user

does no«. I« is es«ima«ed that there are more «han 2.5 million Unix systems in use today.

The Microsoft famfiy of OSs, complete with the Windows GUI, however, has an installed

base of more than 60 million on the PC. [PARA96] Many personnel entering military

service today have experience with the Windows OS. Some military personnel now use

Windows OSs on desktop PCs for administrative uses, as the Services become

increasingly reliant on personal computers. Microsoft continues to adjust its GUI through

upgrades to the Windows family of OSs. The Windows GUI remains easy to learn and

Environment.8

S windows 95 represented a major ^**£%£X1 JertST For

the!
variations of it.

65

b. Application integration

Both NOSs provide the operating environment and vehicle to provide

broad based support for integrated applications. Because the Windows NOS family

enjoys an installed base of more than 24 times the estimated number of Unix systems, the

commercial development of integrated applications will follow the market trends and

consumer demands. This development provides DOD with a wide range of options for

various integrated applications to support the needs of the end user using both the Unix

NOS and the Windows NT NOS. For custom application development, both NOSs

provide a common foundation for building integrated applications; however, the larger

Windows family installed application base gives Windows NT a slight advantage over

Unix.

c Data sharing

Both Unix and the Windows NT NOSs provide mechanisms to support

data sharing. Windows NT provides both its own proprietary technology, OLE, and

supports the more fundamental IPC mechanisms to provide cross vendor and cross

application data sharing. The Windows NT technology offers a richer and more intuitive

set of mechanism? which will ultimately translate to improved user productivity, provided

that application developers incorporate the OLE technology into their applications. While

OLE improves user productivity, it demands more complexity in the application program,

and requires users to learn and understand how to use that technology to accomplish tasks

using OLE.

66

B. IMPROVE DEVELOPMENT EFFICIENCY

1. TAFIM's definition of the objective

TAFM's definition of improving development efficiency will be realized by

applying the following principles:

• Common Open Systems Environment. A standards-based common
operating environment, which accommodates the injection of new
standards, technologies, and applications on a DOD-wide basis wül be
established This standards-based environment will provide the basis
for development of common applications and facilitate software reuse.

. Common Development. Applications that are common to multiple
mission areas will be centrally developed and acquired.

• Use of Products. To the extent possible, hardware-independent, non-
developmental items (NDI) should be used to satisfy the requirements
in order to reduce development and maintenance costs.

• Software rense. For those applications that must be custom
developed, incorporating software reuse into the devebpment
methodology will reduce the amount of software developed and add to
the inventory of software suitable for reuse by other systems.

• Resource Sharing. Data processing resources (hardware, software
and data) will be shared by all users requiring the services of those
resources. Resource sharing will be accomplished in the context of
security and operational considerations. [DISA03, Vol. 2 p. 2-2J

2. Interpretation of objective

3I1B| Common open systems

" A common open systems environment is what DOD (and the government

in general) is trying to achieve with the Du COE framework. A common operating

environment is suppose to achieve maximum competition in the market place by providing

standards that are approved by standards committees, such as the National Institute of

Standards and Technology (NIST) or the IEEE. It is important to recognize that these

67

Standards are open to independent implementation. Any vendor complying with given

standards can develop and market software applications that will run on any system that

complies with the standard. The current focus in the computer market place is on

standardization.

But standards are not as "standard" as one might think. While

standardization is a common trend in DOD and the private sector, there are many

"standards" with which a system must comply to enable an information system to operate

properly in a given environment. The example of how the DII COE uses the POSIX

1003.1 standard for NOS to application interaction, and the Motif standard to define the

NOS to GUI interaction, demonstrates that POSIX compliance in and of itself is not

sufficient to provide the end user with a working application or information system. Table

1 provides a sample of some of the more common open systems standards which exist

today.

• POSIX. 1 • CDE

• POSIX. lb • XI1

• POSIX. lg • Motif

• POSIX .2 • HP'sVUE

• POSIX. le&.2c • Sun's OpenLook

• POSDfe.5 • OpenDoc

• xfemjNrx • XPG4 Base

• XPG4V2 • GCCSCOE
Table 1. Open Systems Standards [ROYS96 p. 8]

As Table 1 and Figure 10 show, there is no single open systems standard,

nor is there one encompassing standard covering all implementation procedures or APIs.

Standards, whichever ones have been established for a given information system, must be

68

implemented together to provide an environment with which application development can

be accomplished. Given a specified set of standards, application developers must then

program with every standards' API set in mind.

While the use and development of open systems standards is beneficial in

improving development efficiency, care must be taken to select standards at the

appropriate level and specificity to be used in both the information system and the COE.

As any standard becomes better defined and more specific, the application developer is

provided with a more regimented set of implementation procedures. In effect, more

descriptive standards give less for the developer to interpret from the standard, and

provides more consistency in application development. A more descriptive standard limits

the developers ability to apply "non-standard" (creative) implementation of the API or

application. While it appears that the developer is more constrained in how they

implement or use APIs, open systems standards ensures implementation consistency

across applications and information systems. Figure 10 demonstrates the different levels

of open systems standards.

69

XPG4 UNIX
(Spec 1170)

Figure 10. Scope of Open Systems Standards [ROYS96, p. 9]

The NOS provides a foundation for standards implementation. It is

interesting to note that while POSIX is an open systems standard, it is based on existing

Unix APIs. Ideally, an open systems standard which is truly vendor independent should be

independently developed, and not based on any specific NOS or NOS variant. This

ensures vendor independence.

UP A^iile open systems standards are required by TAFIM, DU COE, and the

mandate of DOD for information systems development, there is another established type

of standard which achieves TAFIM's objective to improve development efficiency. That

standard is the selection of a particular proprietary NOS. Adoption of this method as a

standard supports development efficiency, but does not promote vendor independence or

competition, as discussed later. It is therefore seldom considered a means of improving

70

development efficiency. Given this, the argument for establishing an open systems based

standard to improve development efficiency is achieved not because of the particular

standard that is adopted for systems development, but because the fact that a standard has

been adopted and used to facilitate application development.

b. Common development

By applying common development strategies to systems development,

TAFIM expects to centrally develop and acquire applications from single points of

contact. The benefits of common development strategies are similar to the benefits of

moving from flat file database structures to relational structures. The database analogy

reduces the redundancy of data and eliminates the need to key identical (or similar) data

into separate data structures and databases. Common development strategies eliminate

the need for organizations in the DOD to develop routines or applications which

functionally serve the same purpose.

The GCCS has made significant strides in improving overall system

development efficiency by using common development strategies. DISA, the primary

development agency of GCCS, has identified and assigned common software modules and

applications^grovide functionality across service boundaries. The Army provides the

mapping dM#ai|ä service routines for all geographic displays. Navy, Marine Corps, Air

Force, Coast Guard, and intelligence agencies use these routines with their respective

applications and do not need to develop service specific mapping routines. If a software

application shares a common use with another, then their development and acquisition

should also be together. This reduces the number of software applications and routines

71

that need to be developed for DOD, and allows software to be developed more quickly

and efficiently. Common development strategies improve the overall quality of software

used by DOD, and development is completed in a more timely and efficient manner.

Defining a standardized NOS environment allows applications to be developed to a

common architecture and standard.

Common development techniques require that specific open systems

standards be defined. This provides the base set of APIs for application development and

provides the basis for software compatibility. Without adherence to the same open

systems standards, it is unlikely that segments or applications relying on modules from

other applications would function properly. The need for adherence to open systems

standards to ensure functionality across applications is best demonstrated by looking at the

many variants of Unix. While many programs have been developed for Unix OSs, several

applications using an API set for one variant of Unix may not function properly on a

different Unix variant. Successful integration and sharing of applications (or application

segments) using common development techniques demands that their development use the

established baseline standards and APIs.

cö Use of non-developmental products

l~ Tie use of non-developmental products effectively uses commercial off-

the-shelf (COTS) and government off-the-shelf (GOTS) software in DOD information

systems. COTS software is software that DOD purchases from commercial vendors to

fulfill specific DOD needs, and is generally not modified for DOD use. GOTS software is

software that the DOD or other government agencies have developed or retain the

72

licensing rights to. GOTS software exists as both whole applications, and as software

modules which are available to government organizations for reuse. COTS and GOTS

software is, in most cases, independent of special hardware or customized development.

This enables the software to comply with established standards for the particular

information system or computer architecture. The question for the DOD program

managers is whether to use GOTS or COTS software as the primary option.

It is reasonable to assume that GOTS is more readily available and less

costly option, since it is "owned" by government entities. This assumes that the degree of

adaptation or re-engineering of GOTS modules is small or non-existent. Reusing DOD

GOTS software (assuming it was developed with the DII COE framework in mind) would

be consistent with the common "look and feel" of DII COE applications by virtue of DOD

wide application development consistency efforts. GOTS software can be more costly

than COTS when it requires substantial modifications to provide the necessary

functionality for the information system.

COTS should follow in preference, filling in the gaps that are not

adequately fulfilled utilizing GOTS software. COTS software provides for a wide range

of needs, particularly in automation and administrative applications. Here commercial

developme^Öprts have targeted sophisticated software development towards filling the

demanding needs of both corporate America and the home user.

The final option for DOD program managers is to develop the software

either "in house" or to outsource to a commercial vendor for special purpose

development. This last option is usually more costly and should be avoided when possible

to reduce or eliminate redundant development efforts and save limited financial resources.

73

Outsourcing and "in house" development offers the advantage of being able to customize

application development to a specific need, which may not exist in COTS or GOTS

software.

The issue of using non-developmental products as a method of improving

development efficiency requires managers to weigh the perceived benefits of readily

available COTS software and easily modifiable GOTS software against the cost and

development time of outsourcing, or "in house" development. It may be better to have an

immediate or short term GOTS or COTS software application with 80 percent

functionality than an expensive new application development effort which provides an

application with 95 or more percent functionality and a relatively long developmental time.

The problem of establishing rules specifying using GOTS before using

COTS does not allow the flexibility needed by DOD in choosing the best mix of software.

There is a price-productivity tradeoff between the acquisition cost of COTS and the

development cost of GOTS. For example, Applix (a DOD Unix-based application similar

to Microsoft Office currently on GCCS) is not as user friendly or full-featured as most

commercial office suites. As a result, the extra dollars spent on a familiar COTS office

suite may be well worth the improved productivity likely to occur by using a familiar and

fuller featu|§#soihvare program.

Using COTS products relies on the NOS to provide the foundation with

which applications can operate in. The larger the pool of software products to choose

from and the greater the competition between vendors, the better the chance end users

have to get the desired program and functionality. This implies that the DU COE

74

framework, and the NOS, should be able to run applications compatible with the largest

installed commercial base NOS.

While POSIX compliant programming does not directly improve

development efficiency, it does allow developers to provide a single product capable of

running on a wide variety of systems (those conforming to the POSIX standard). This

makes POSIX compliant applications both hardware and NOS independent. While this

argument is reasonable, we would expect software vendors to willingly develop to the

POSIX API.

In recent years, however, this has not been the case. Developers have not

entirely embraced systems standards for application development because the standards

typically take three to five years to make it through the IEEE or equivalent standards

committee. Developers frequently need new solutions to existing software projects, and

cannot wait for the standards committee to devise a standard implementation. This reality

is demonstrated by the relatively few POSIX compliant applications being produced or

marketed today, several years after the POSIX standard was implemented. This leaves

DOD with the reality that most non-developmental items are not POSIX compliant, and

are unlikely to be in the near future. Selection of a NOS for DOD information systems

must consiJ^pBs carefully, and evaluate the cost-benefit of adopting a NOS consistent

with the market trend to ensure compatibility with the installed pool of non-developmental

items.

75

d. Software reuse

Many IT managers argue software reuse is more of a necessity today, given

the increasing complexity and size of software projects. Repositories of software

modules, procedural calls, and common code can decrease developmental time

significantly, reduce maintenance costs, reduce development schedules, and increase

product quality. Many application programs have the same general "look and feel" of

toolbars, buttons, and other common functionality. This code can be incorporated in

modules that can be reused each time a new application is developed.

A drawback to software reuse, however, is the time required to make that

module or software program code reusable. The use of global variables, documentation,

and general standardization of code is important and time consuming and may not increase

the development efficiency of the current application if it is developed from new program

code. While software reuse is a very important concept, it is not really a significant issue

that effects the selection of a NOS for use in an information system.

e. Resource sharing

While sharing of file servers, print servers, peripheral devices such as

scanners, prater^ modems, as well as software and data improves the efficiency of an

organization, theftAFIM TRM makes no inference how this tenet improves development

efficiency. Resource sharing in a common NOS does not provide any significant

improvements in development efficiency, and is left for discussion in other research areas.

76

3. Analysis of the Unix and Windows NT architectures

The authors chose to combine the analysis of Unix and Windows NT into one

section. There are no strong areas to differentiate between the Unix and Windows NT

NOS in the area of improved development efficiency. Both NOSs have a common

development environment as defined above. Both NOSs conform with the POSIX 1003.1

implementation of open systems. Common development is a matter of application

development management to a given set of standards and needs. While the NOS provides

the foundation for application development, improving development efficiency is more a

function of implementing common development strategies in an open systems environment

than it is in establishing the best standards or environment.

The use of non-developmental products like COTS and GOTS offers clear

improvements to development efficiency by enabling DOD developers and program

managers to allocate development resources to problems where COTS and GOTS

solutions do not exist. It is tempting to propose that Windows NT, with its greater

installed base of applications (including Windows 3.1, Windows for Workgroups, and

Windows 95 compatible applications), offers the greatest benefits to improving

development efficiency. However, it fails to consider the broad needs of the users, or the

complexity^^^lication development needed to support many of DOD's needs.

The other area of concern is software specific development. There are numerous

GOTS applications currently available for the Unix NOS, including the current software

running on JMCIS and GCCS. However, there is a preponderance of Windows NT-based

COTS software in the market place that gives the Windows NT NOS a clear advantage

over the Unix NOS in other areas. With a large COTS pool, developers can reuse code in

77

their developmental products easily and efficiently. When COTS solutions are not

appropriate or effective, GOTS should be considered. An alternative method for specific

DOD related development, where COTS and GOTS products are not available, would be

to outsource software rather than to develop software within DOD. The important point

here is that market place applications are developed and tested by corporations that

specialize in and know how to develop software applications. The DOD should not be in

the business of developing numerous applications that are already available in the market

place. So whether a Windows NT NOS or a Unix NOS is used does not greatly impact

improving developmental efficiency. Even though a qualitative determination of which

NOS offers more development efficiency was not performed, it is safe to argue that using

COTS and GOTS products with either Unix or Windows NT will improve development

efficiency.

4. Summary of findings

There is really no NOS which can provide any significant advantage in

development efficiency. Improving development efficiency is more a function of

establishing a common set of development standards and policies and being consistent in

their application across the development of many information systems.

C. IMPROVE PORTABILITY AND SCALABILITY

1. TAFEVTs definition of the objective

The portability and scalability of applications will be improved by applying the

following principles:

78

• Portability. Applications that implement the model's paradigms will
be portable, allowing for movement across heterogeneous computing
platforms with minimal or no modifications. With portable
applications, implementing activities will be able to upgrade their
hardware base as technological improvements occur, with minimal
impact on operations.

• Scalability. Applications that conform to the model will be
configurable, allowing operation on the full spectrum of platforms
depending on user requirements. [DISA03, Vol. 2 p. 2-2]

2. Interpretation of objective

Of all the TAFIM objectives, portability, scalability, and interoperability (discussed

in the next objective) are arguably the most important and fundamental issues in the

development of any DII compliant information system. It would be foolish to deny that

other TAFIM objectives were not important, but, they do not have much significance

without strong solutions to portability, scalability, and interoperability problems.

Portability, scalability, and interoperability problems are almost always solved by

technology solutions instead of procedural or managerial solutions. Common standards

provide the base upon which portability, scalability, and interoperability are realized.

a. Portability

Portability enables software to be moved or installed to a machine based on

a different processor technology or configuration, with as little recoding as possible.

Although NOSs, and OSs in general, are often described as either "portable" or

"nonportable," portability is not a binary state, but a matter of degree. The crucial

question is not whether software will port (most will eventually), but how difficult it is to

port. Likewise, portability is affected by both hardware and software compatibilities. At

the hardware level, generational differences between processors or differences in

79

microcoding can significantly affect the porting of a NOS. At the software level,

portability can apply to the NOS, applications, data, and data structures.

Developing a NOS that is easy to port is similar to developing any portable

program. First, as much of the code as possible must be written in a language that is

available on all target platforms. Factors that must considered are the hardware

architecture and the microprocessor. Usually this means that code must be written in a

high-level language, preferably one that has been standardized. Assembly language code

is inherently nonportable.

Second, porting application software or NOSs to obsolete hardware adds

complexity to the NOS design. Different hardware imposes different constraints on an

OS. For example, a NOS designed for 32 bit addresses could not be ported (except with

enormous difficulty) to a machine with 16 bit addresses. As the DOD's needs for

information processing expand, outdated computer architectures like the Intel 286 and 386

based personal computers should be phased out of information systems. As our need for

information places greater demands on hardware capabilities, NOSs cannot maintain

compatibility with legacy systems that do not have the computing power to meet today's

information needs.

It is also important to minimize, or eliminate wherever possible, the amount

of code that interacts directly with the hardware. Hardware dependencies can take many

forms. Some obvious dependencies include directly manipulating registers and other

hardware structures or assuming a particular hardware configuration or capacity. This

argument ties closely to another TAFIM objective, achieving vendor independence, by

80

establishing non-proprietary specifications for hardware and software based on open

standards.

Finally, hardware-dependent code, if any, should be confined to a few easy-

to-locate modules. Hardware-dependent code should not be scattered throughout the OS.

Instead, it can be hidden in a hardware-dependent structure within a software-defined,

abstract data type. Other modules of the system manipulate the data type rather than the

hardware by using a set of generic routines. When the OS is ported, only the data type

and the generic routines that manipulate it must be modified.

Portability is an essential element in the DU COE. Given the broad

demands and needs for information processing, displaying information, and system

performance, information systems following the DII COE will be based on several

hardware architectures, including desktop personal computers, high performance multi-

processor personal computer systems, traditional workstations, and high performing

multiprocessor workstations and supercomputers. The NOSs used in this type of

information system must be portable across the entire range of systems.

b. Scalability

The traditional definition of scalability has been oriented around software

that performed well under a wide variety of usage scenarios. True scalability is about

protecting the investment an enterprise makes in its information systems. The real proof

of an information system's scalability is its flexibility to adapt to changing needs and its

ability to adapt to improving technologies, all without having to be completely replaced or

rewritten. The DOD expects and demands that its information systems grow and adapt.

81

DOD needs flexible, yet cost-effective solutions that can efficiently meet the needs of the

users under a wide range of conditions and environments, without consuming excessive

resources. Despite this requirement, there are too many projects where information

systems do not scale beyond current needs.

Most development teams strive for scalable software to achieve a single

body of code that will serve various sizes of installations - for instance, meeting the needs

of the one-person office in a remote site as well as the needs of the company's

metropolitan corporate headquarters housing thousands of employees. In addition to this

restricted view of scalability, there are even more issues to consider.

New technologies have redefined who users are, where they interact with

systems, and even how they use corporate applications. System and application design

must take into account users at remote sites and mobile users accessing systems while

working in the field or at sea.

Another factor emerging today is systems that use multiple architectures,

linked together into one large application. This new mix of users requires greater skill and

planning on the part of the development team. Given the broad need and wide ranging

requirements of DOD information systems using the DU COE framework, it is unrealistic

to expect a globally homogeneous hardware architecture.

While the traditional definitions of scalability are important, we are faced

today with a need for new definitions and tests for scalability in an ever increasingly

connected network environment. In today's dynamic computing environment, it is difficult

to imagine any DOD application that does not require the ability to grow and adapt. In

82

more generic terms, scalability is viewed as the performance gained from resources added

to a computer system [INTE95].

The hardware, NOS, application software, and flow of work done on the

system together determine the size of the performance gain. While all four of these factors

are critical to an information system's scalability, the NOS design is essential to integrate

and capitalize on each of the factors to provide overall scaling performance. The NOS

must support single processor as well as symmetric multi-processing (SMP), wide ranges

of memory addressing, wide ranges of disk storage capacities, and for servers, varied

levels of transaction requests. Similarly, the NOS must support distributed computing

under a wide range of system loads and application software.

Businesses that employ scalability in their applications will find their

systems to be more responsive and flexible in today's dynamic business environment.

Software that scales can be reused, whether it is to enable use in another division, or to

contend with continuing change and movement in the enterprise. Today, an information

system must provide for changes in numbers of users, amounts and types of data, remote

and mobile users as well as onsite users, a mix of server types, and lastly, be flexible

enough to easily incorporate technological improvements and ever increasing software and

hardware capabilities.

In short, building scalable information systems is one of the best ways the

enterprise can protect its investment in computer technology. Scalability can be achieved

through careful application planning and design, good software development practices,

and application of available platforms, programming, and database tools. Figure 11 offers

83

a simplified example of how hardware and software must scale for the wide range of

changing needs of a DII information system.

Coipcratettfrle
ÜlfikiJimthCin. SBVU.

Ihyuuiiflii IikfuuHiadLon.

High. Pttf«mum*
Desktop

Aiwtft
Seddop

Figure 11. The range of scalable systems

3. Analysis of the Unix architecture

a. Portability

The Unix NOS is generally regarded as the most portable NOS on the

market today [DUNP94, p. 467]. Unix portability stems from its strong foundation on

open systems standards. As a NOS, Unix has been ported to most hardware architectures

including those based on RISC microprocessors as well as the Intel 80x86 based CISC

microprocessors. Even though there is no disputing that Unix is a very portable NOS, this

must be kept in perspective. Unix's reputation for portability is based on two premises.

On the macro scale, Unix portability is evidenced by the 15 or so major variants of Unix

on the market (see Figure 7). These variants represent the successful porting of the Unix

NOS by different vendors. In the context of TAFIM and the DII COE framework,

84

however, this evidence of portability represents little significance since only two have been

adopted for the DU COE.

The true significance of Unix portability lies in the ability of a particular

variant of Unix to port to different hardware architectures as needed. In the context of the

DII, this is a very necessary feature, enabling the NOS to be used on a wide variety of

hardware architectures. Hardware architectures used in most information systems using

the DII COE are likely to span the entire spectrum of scalability. This implies that any

DOD approved variants of Unix (HP-UX 9.01, or Solaris 4.1.1) must be able to port to

hardware architectures being used on the information systems. These architectures are

likely to include a wide variety of RISC based architectures as well as the Intel X86 based

platforms.

Porting Unix to these architectures must consider the following hardware

specific items:

• Data path size -16 bit or 32 bit

• Byte ordering and byte alignment

• Address size -16 bit or 32 bit

• Use of microcode

• System bus architecture

• Register operations

• Addressing modes

• Stack management

• Memory management

• I/O Architecture

85

• Interrupt levels

• Instruction pipelining [ANDL90, p. 218]

Each of these hardware implemented technologies is accessed by the NOS

in specific manners. When porting a NOS to architectures which implement these

technologies in different manners, the porting process requires adapting the NOS to the

specific technology.

Unix was designed using a portable language. This helps the porting

process. Additionally, the Unix NOS is based on a modular design. Code which is

machine dependent is located in a small number of isolated modules. The modules which

contain this machine dependent code are the machdep and the machen modules, as well

as some isolated assembly coded modules. The machdep module contains startup code

that identifies the OS, displays real and available memory sizes, and sets up the map from

the memory mapping register. It also includes the code to start the system clock, send an

interrupt to a process, copy a number of bytes from one physical memory, create a

duplicate of a process, change protection codes of text (code), check size of the data, text,

or stack of a process, manipulate page tables, and set up initial memory. The second

module, macherr, has routines to check the CPU state and to process memory parity,

CPU time-out, or bus errors.

These two modules, along with the assembly language routines, are

required to be rewritten completely for multiprocessor operation. The rewrite becomes

more involved if byte ordering and memory management of the target system are

significantly different from that of the porting source machine. [ANDL90] While Unix is

portable, HP-UX has not been ported to any other hardware platform other than the

86

Hewlett-Packard line of computer systems. HP-UX will not run on non-Hewlett-Packard

hardware architectures. [CUMM96]

b. Scalability

Unix is generally regarded as highly scalable. Unix, running on traditional

RISC based workstations such as Sun and Solbourne computers, provides users with

unique scalability, supporting massively parallel processing architectures, symmetric

multiprocessing, and large capacities of addressable random access memory (RAM) and

secondary storage (RAID drives, etc.).

HP-UX, one of the two variants of Unix approved for the DU COE, is

designed to run in environments ranging from the average desktop, engineering

workstations, workgroups, and departmental servers to enterprise (DOD wide) server

systems within the data centers of large enterprises such as in DOD. HP-UX supports

SMP with up to 14 RISC-based processors. HP-UX also offers support for enterprise

level parallel server support for "parallelized" applications. This feature enables servers to

work in parallel to provide information and data retrieval services under heavy user loads.

The HP Enterprise Parallel Servers (EPS) comprise two or more HP 9000 T-class or K-

class SMP supernodes, each with up to four or 12 SMP processors respectively. Up to 32

superaodes can be configured into a single (EPS) - yielding a total of 384 processors if

12-processor supernodes are used. This kind of scalability enables the HP-UX NOS to be

based on single processor workstations for single user access, as well as on SMP based

servers using up to 14 processors, and supernode clusters of HP-UX machines with up to

384 processors.

87

HP-UX also supports large scale functionality including support for up to 2

billion user IDs, 3.75 Gigabytes of addressable RAM, support for disk striping, a form of

virtual disk allocation which spans multiple physical hard disks, and single file sizes of up

to 128 Gigabytes. While Unix scales well to the high-end enterprise servers and

superservers, it lacks in its ability to provide cost effective low-end scaling. Unix and its

associated RISC-based hardware typically costs considerably more than its PC

counterpart. Some may argue that this reflects the superior performance and capabilities

of the machine architecture and NOS combination, but it is crucial to recognize that it is

important for information managers to select the appropriate scale system for each

application. We could all accomplish our daily work using a SMP or parallel enterprise

server as our desktop machine, but it is not practical for DOD to expend limited financial

resources to do so.

4. Analysis of the Windows NT architecture

a. Portability

Windows NT was designed for easy porting and scaling. In fact,

portability and scalability are two of the design criteria for the Windows NT development

team. While our interpretation of portability clearly states that portability is not a binary

state, porting Windows NT can be described as easy to port to a wide range of hardware

architectures, based on both CISC and RISC microprocessors. Several design features of

the Windows NT NOS permit easy porting, they are:

• Portable C. Windows NT is written primarily in the C language, with
extensions for Windows NT's structured exception handling
architecture. Developers selected C because it is standardized and

88

because C compilers and software development tools are widely
available. In addition to C, small portions of the system were written in
C++, including the graphics component of the Windows environment
and portions of the networking user interface. Assembly language is
used only for parts of the system that must communicate directly with
the hardware (the trap handler) and for components that require
optimum speed (such as multiple precision integer arithmetic).
However, non-portable code is carefully isolated within the
components that use it.

• Processor isolation. Certain low-level portions of the OS must access
processor-dependent data structures and registers. While, the code that
does so is contained in small modules, they can be replaced by
analogous modules for other processors with relatively little
programming effort.

• Platform isolation. Windows NT encapsulates platform-dependent
code inside a dynamic-link library known as the hardware abstraction
layer (HAL). Platform dependencies are those that vary between two
vendors' workstations built around the same processor - for example,
the MIPS R4000. The HAL abstracts hardware, such as caches and
I/O interrupt controllers, with a layer of low-level software so that
higher-level code need not change when moving from one platform to
another. [CUST93]

Windows NT was written for ease of porting to machines that use 32 bit

linear addresses and provide virtual memory capabilities. It can move to other machines

as well, but at a greater cost in reprogramming additional modules. As the hardware

architecture deviates from standard PC and workstation architectures, the porting process

relies more heavily on the modular object oriented design of Windows NT. Similarly, as

64 bit computer architectures become more available for DOD applications, Windows NT

will facilitate upgrading and porting to such technologies because modules will be recoded

for 64 bit computing. Some of these modules include the I/O manager, Kernel, and HAL

(Refer to Figure 9, Windows NT Architecture).

89

b. Scalability

Until recently, understanding how Windows NT scales in enterprise

computing environments has been misunderstood. This misunderstanding has stemmed

from confusion over Microsoft's standard Windows NT licensing policy, and a lack of

application software products optimized for use with Windows NT.

Microsoft designed Windows NT for use on systems scaling from a single

processor to as many as 32 microprocessors. The confusion over this broad scalability is

that Microsoft licenses Windows NT Workstation for systems using up to 16 processors,

and Windows NT Server for systems using up to 4 processors. Scaling Windows NT

beyond the basic license requires special Microsoft Original Equipment Manufacturer

(OEM) versions and licenses. While this may sound like a complicated issue, vendors

selling multiprocessor computer systems ship Windows NT versions and licenses with

support for the number of processors used in multiprocessing systems.

Although we generally think of scalability in terms of the NOS and it's

processors, scalability is affected by the applications the NOS runs. A workstation or

server, which is scaled to the higher performance end, will typically have numerous

processors, vast memory and storage capabilities, and most likely numerous simultaneous

users and transactions. While Windows NT can handle this level of scalability, it also

requires that applications be programmed to scale and take full advantage of the NOS.

One test of this premise compared performance benchmark results of different versions of

Microsoft's Structured Query Language (SQL) server on the same system running

Windows NT v 3.51. The test results found that the more recent version, version 6.0,

performed better. When the hardware consisted of platforms with multi-processors,

90

version 6.0 performed better, establishing that scalability is a function of both the NOS

and the application. [INTE95, p. 3] Figure 12 shows the performance results of the two

versions of SQL based on varying number of processors.

Scalability is Application Dependent

3 4

Number of Processors
»—SQL 6.0
E— SQL 4.21 a

Figure 12. Application Scalability under Windows NT

The number of applications optimized to run on highly scaled Windows NT

servers (departmental and enterprise servers with SMPs) is still relatively small. Market

analysts forecast that current market trends towards Windows NT as less expensive

alternatives to the Unix workstation/NOS will promote application scalability on an

already scalable Windows NT NOS. [INTE95] Testing has shown that on large

multiprocessor systems running software applications designed for multiprocessing NOSs,

that the performance of Windows NT is extremely good, and performs well at the high

end enterprise level server environment [INTE95].

5. Summary of findings

Improvements in portability and scalability have been goals that software

developers, particularly NOS developers, have been working on for several years. Even

91

though we regard Unix as a very portable and scalable NOS, vendor specific

implementations of Unix lack the portability across different hardware architectures.

Windows NT offers a wider range of porting options to a wider base of hardware

architectures.

Information managers should find the NOS which scales best to its application

mix. Windows NT scales best for low end single user workstations to the mid-level or

departmental servers (supporting both single processor and SMP), while Unix scales best

from the mid-level servers to the high end servers. This "scale to fit" concept for selecting

the appropriate NOS then requires that the NOS(s) be interoperable, and is the focus of

the next section.

D. IMPROVE INTEROPERABILITY

1. TAFEM's definition of the objective

Interoperability improvements across applications, hardware, and mission areas

can be realized by applying the following principles:

• Common Infrastructure. The DOD will develop and implement a
communications and computing infrastructure based on open systems
transparency including, but not limited to, operating systems, database
management, data interchange, network services, network
management, and user interfaces.

• Standardization. By implementing standards from the DOD Profile of
Standards, applications will be provided and will be able to use a
common set of services that improve the opportunities for
interoperability. The standards provided in TAFIM are included in
appendix B (Table 4). [DISA03, Vol. 2 p. 2-3]

92

2. Interpretation of the objective

As mentioned in the previous objective, interoperability is one of the most

important objectives being analyzed. If information systems can not interoperate, then

many of the objectives of the TAFM TRM are irrelevant. An information system does

not consist of stand alone desktop computers working separately, but a strongly cohesive,

highly coupled network of compatible and interoperable machines. Computers operating

in isolation do not provide significant informational resources in an organization, but when

interconnected, they provide users with a synergistic collection of information which may

reside anywhere on the network.

a. Common infrastructure

Development of a common infrastructure enables a series of vendor

independent hardware and software the ability to communicate and run applications

anywhere on the network. A common NOS, common database, and network

implementation are all areas to be considered in achieving this common infrastructure.

Open systems, defined in Chapter II and discussed throughout this thesis, provides one of

the essential mechanisms to achieve this common infrastructure and interoperability. A

common infrastructure includes such hardware and software as the NOS, databases,

communications protocols, as well as the network and its interface. A common

infrastructure is not about a specific NOS or communications method, but a common or

shared ability to communicate with the infrastructure. A common infrastructure should

provide systems that are able to communicate with not only existing systems, but are also

capable of being integrated into future systems.

93

There are many forms of integration. At a minimum, integration of

Windows-based and Unix systems must provide for simple network connectivity between

the systems. Users must be able to access files and data across platforms over a network,

and applications on different systems must be able to communicate with each other. To

achieve better integration, it is also necessary to enable cross-platform application

development, object services, database access, messaging, and systems management. See

Figure 13, Interoperability between PCs and Unix Workstations.

PC
File access

Applications

Databases

Objects

Messaging

System management

UNIX workstation

Figure 13. Interoperability between PCs and Unix Workstations [MICR14]

With cross-platform application development based on standards,

developers will be able to write platform-independent applications, and then tailor the

application to its appropriate scale. Cross-platform object services enable software

components to communicate across platforms easily and can help make users more

productive. Object services, database access, and messaging provide similar advantages.

System administrators will be able to manage heterogeneous systems, if system

management software can provide, at one place, management information about these

heterogeneous systems running different NOSs. Cross-platform database and messaging

94

services provide users with a means for easy, platform-independent information exchange.

[MICR14]

At a minimum, system integrators must arrange to provide users with a

means of accessing files between systems of different NOSs. One way of achieving this

interoperability at the NOS level is to enable dynamic loading of installable file systems

when the NOS encounters a non-native file system. The concept of the installable file

system (IFS) is to permit the NOS to load the appropriate device drivers and interpreters

to provide the NOS access to the file system (e.g., FAT, NTFS, NFS). Each file system

stores data in different methods, requiring the NOS to be aware of the storage methods

through the use of the IFS drivers. IFS drivers can be loaded during system boot, or

dynamically as needed.

The NOS provides the connectivity interface between the machines, LANs

and WANs. Future DII information systems will likely be a heterogeneous mix of vendor

independent platforms conforming to a common infrastructure. It is this common

infrastructure and carefully selected NOSs that must support interoperability.

b. Standardization

The problem of non-compatible information systems can only be

accomplished through standardization. For systems to interact, there needs to be an

accepted set of standards not just within organizations, but globally. If individual

organizations develop and implement their own set of standards, then there will be

inconsistencies between these organizations. One might argue that it is impossible to

adopt a global series of standards because new and improved standards are being

95

developed in the market every day. This thesis argues that specific standards adopted for

an information system are less important than the market agreeing upon an acceptable set

of standards that provide worldwide (or global) interoperability.

Standards are documented agreements containing technical specifications

or other precise criteria to be used consistently as rules, guidelines, or definitions of

characteristics, to ensure that materials, products, processes and services are fit for their

purpose. For example, the format of credit cards, phone cards, and "smart" cards that

have become commonplace is derived from an ISO standard. Adhering to the standard,

which defines such features as an optimal thickness, means that the cards can be used

worldwide. International standards thus contribute to making life simpler, and to

increasing the reliability and effectiveness of the goods and services we use, wherever we

use them. [ISOR96]

While to some extent it does not matter which standards are selected, some

offer more and better functionality than others. There are numerous proprietary

standards, as well as multiple open systems standards. For example, DOD information

systems are based on open systems standards because they support objectives such as

vendor independence and development efficiency. While the DOD strives to achieve these

objectives, the market is developing and adopting its own set of standards. We argue that

the DOD should not be in the business of trying to develop or regulate standards, but

allow the market to decide on the standards and then adopt them whenever they fit DOD's

needs. Computer industries are developing new technologies every day because of their

competitive nature, and these new technologies should be utilized in DOD.

96

Additionally, once standards are developed in the market place and

approved by international committees, they should be implemented in DOD information

systems. Implementing standards has the following benefits for the computer industry:

• Increase market access and acceptance

• Reduce time and costs in product development

• Attain a competitive advantage and faster time to market

• Cut costs in component and materials acquisition

• Reduce administrative and material expenses [ANSI96]

While standards are clearly needed to achieve interoperability across the

platforms of an information system, some standards evolve differently than others. This

evolution can have dramatic impacts on DOD information system development initiatives,

and explains why DOD has not divorced itself from developing its own standards like

TCP/IP.

There are essentially two types of standards in the market: open systems

standards and proprietary. Open systems standards are developed by consensus and

typically take about three to five years to make it through very large committees such as

the IEEE. This length of time can mean that once a new technology becomes an IEEE

standard, it may have been in use for several years, or may even be an old technology.

Proprietary standards, on the other hand, are typically developed quicker by vendors who

have a stake in the success of their product on the market. Proprietary standards are in

conflict with some of the other TAFIM objectives, such as vendor independence.

The benefits of standards are in line with the new role of DOD, which is

"to do more with less". It is evident, therefore, that DOD should implement commercially

97

developed and internationally approved standards to achieve compatibility and

interoperability.

3. Analysis of the Unix architecture

a. Common infrastructure

Unix achieves a communications and computing infrastructure based on

open systems transparency, by providing flexible and open alternatives, rather than being

locked into proprietary systems and applications. Although there are many proprietary

variants of Unix, it is still arguably the most open operating system on the market. A

common infrastructure of vendor independent hardware and software puts the control of

information technology decision making into the hands of organizations rather than into

the hands of specific vendors. Organizations are weary about giving up control of their

information systems to specific vendors. With an open NOS, organizations can adapt

hardware, applications, and other software to different or better versions as they arise, and

not wait for a specific upgrade from a specific vendor. Unix achieves the advantages of

cooperative open systems development with the advantages of a freely competitive

market. [UNIF95]

According to UniForum, the International Association of Open Systems

Professionals, Unix has been cooperatively developing information systems for the past 25

years. Many of the mainframes and legacy systems of the past are being converted into

Unix based open architectural information systems. Without a single vendor to rely on,

modification of systems to meet current needs can occur with relatively little capital

investment. Portability of applications is relatively easy and can be accomplished with

98

modest cost. Vendors come and go, but with open systems, Unix provides a stable and

secure platform.

b. Standardization

As stated above, Unix vendors such as HP and AT&T have been

developing products for many years. As a result, they have established some of the

primary industry standards readily available and in use today. These standards have helped

to shape information system interoperability. Network interoperability use to be

impossible unless everything was bought from a single vendor. Unix, on the other hand,

was the first OS to provide communication on the Ethernet with TCP/IP. TCP/TP was

designed and adopted as the Internet communications protocol suite in 1983. [UNEF95]

One major standard from the Unix community is the X-Window System.

The X-Window system provides the ability for other OSs to interact with it. X-Windows

is a sophisticated windowing system developed and overseen by a nonprofit, vendor-

neutral consortium. It is therefore relatively easy to connect diverse laptops, terminals,

and desktop computers to Unix servers, making network-wide interoperability a reality.

Other standards from the Unix community include Simple Network

Management Protocol (SNMP) and Simple Mail Transport Protocol (SMTP), which are

part of the TCP/IP suite of protocols. SNMP is a simple mechanism to centrally manage

diverse networks and will be discussed in detail later in system manageability.

Additionally, the development of the programming languages C and C++, now standard

languages used in most OSs, helps programmers more easily design NOSs with

interoperability in mind.

99

4. Analysis of the Windows NT architecture

a. Common infrastructure

Windows NT is a NOS which was first introduced into the commercial

market place in 1991. Since then, Windows NT has undergone two major upgrades.

Windows NT was not the first NOS designed to exist on both local area and wide area

networks, but it was, unlike other NOSs, built from the ground up with wide connectivity

and interoperability in mind. Windows NT provides:

• Portability across families of processors, such as the Intel 80X86 and Pentium
lines

• Portability across different processor architectures, such as CISC and RISC

• Transparent support for single-processor and multiprocessor computers

• Support for distributed computing

• Standards compliance, such as POSIX

• Certifiable security, such as C2 and F-C2, E3

Windows NT is a complete NOS with fully integrated networking,

including built-in support for multiple network protocols. These capabilities differentiate

it from other OSs and NOSs such as DOS, Windows V3.1, and Unix. With these OSs,

network capabilities are either installed separately from the core operating system, as an

after market add-on, or patched in a version upgrade.

Windows NT offers built-in support for both peer-to-peer and client/server

networking. It does not provide host based networking. Windows NT provides

interoperability with, and remote dial-in access to existing networks, support for

distributed applications, file and print sharing, and the ability to easily add networking

100

software and hardware. Windows NT does this by design, closely following the OSI

reference model. The Windows NT implementation of the OSI reference model is

displayed in Figure 14. Windows NT uses this model to provide services to the next

higher layer, shielding the higher layer from the details of how services are actually

implemented. In Windows NT, network layers provide virtual communication with peer

layers on another computer. In reality, each layer communicates only with adjacent layers

on the same computer.

7.Applcation UearMode
RPC Provider» | Named Pipe»

6. Presentation Kotnol Modo

5. Senk» NetBIOS Driver || Radiracton Server» WnSock Driver

Transport Driver Interface
4. Transport

omc/wio

r

Traneport Prakjcola 3. Network

2. Data Link

(U.C) NDI8 Interface | STREAMS

(MAC) Network Adapter Card Driver«

1.Physical Ne«mrk Interface Card(s)

Figure 14. NT implementation of OSI Reference Model [MICR03]

b. Standardization

Adoption of the Industry Standards Organization (ISO) model in the

Windows NT design offers Windows NT a standards-based method of interconnection,

and thus, increases interoperability with other machines using the same standardized

model. It also allows NT to connect with non-conforming NOSs due to the nature of the

layered design, providing services with the adjacent layer of the local machine. [MICR03,

p. 14]

101

While the built-in networking features of Windows NT are quite

sophisticated, they suffer from being proprietary and lend themselves to providing

excellent interoperability with other Microsoft products like Windows 95, Windows for

Workgroups, and LAN Manager. Providing interoperability with other OSs like Novell

NetWare, IBM's OS/2, Macintosh, and Unix, requires the Windows NT architecture to

provide an alternative mechanism for connectivity. Microsoft provides this at two levels:

the Network Device Interface Specification (NDIS) and the Transport Driver Interface

(TDI).

NDIS provides an interface for communication between the Medium

Access Control (MAC) sublayer and protocol drivers higher in the OSI model. This

standard is key to isolating the details of the Network Interface Card (NIC) from the

transport protocols and vice versa, and eliminates the need to write complicated device

drivers for each type and brand of NIC. TDI provides a direct link between all redirectors

or network file systems and other network transport drivers. Since Windows NT sees all

networks as some type of file system, network providers need only provide program code

for their file system, which Windows NT loads as required to access the file system ofthat

network. This code is called an Installable File System (IFS). This concept is similar to

the "IFSHLP.SYS" file installed from the "CONFIG.SYS" file in Windows for

Workgroups to give 32 bit disk and file access.

With TDI and NDIS, Windows NT can access many network file systems

by adding the installable file system code and the transport driver for the type of

networking protocol that is in use. Table 2 shows the protocol support that Windows NT

provides:

102

Network Operating System Protocols used

Windows, WFW, Windows 95, Windows NT NetBEUI
Unix TCP/IP
OS/2 NetBIOS
NetWare IPX/SPX
Apple Appletalk
IBM Mainframes DLC

Table 2. NOS Protocols [MICR09]

While other NOSs support only their own proprietary protocols, Windows

NT is designed to interoperate, and therefore, can simultaneously support all of the above

listed protocols. Multiple protocol support is achieved by maintaining multiple stacks in

memory. The NOS then redirects incoming network packets to the appropriate protocol

stack for processing and routing. This provides Windows NT with a significant ability to

integrate heterogeneous networks into a single network running multiple protocols.

Windows NT, like Unix, uses the Remote Procedure Call (RPC) facility.

The RPC is highly used in distributed computing and is the IPC method of choice for

software developers. Windows NT is fully compatible with the standardized RPC

specification. The RPC facility in Windows NT is powerful because it relies on other IPC

mechanisms to transfer function calls between client and server. This way, Windows NT

RPCs can use named pipes (Unix), NetBIOS (OS/2), Windows Sockets (WFW, LAN

Manager), etc. to communicate with remote systems. Windows NT's IPC flexibility

makes the RPC feature one of the most flexible, portable, and interoperable IPC

mechanism of the leading NOSs. [CUST93, p. 315]

103

5. Summary of findings

In the final analysis, Unix and Windows NT are both very interoperable NOSs.

Unix traditionally has been the platform of choice in engineering and scientific computing,

and has established a long standing tradition as a stable and efficient NOS. Windows NT,

on the other hand, has demonstrated its ability to offer features, designs, and benefits

which exceed the abilities of many others.

In general, Unix excels in the areas of networking, communications among

heterogeneous systems, and processing-intensive applications. Unix is mature and has

been the replacement NOS as companies have replaced mainframes with workstations

over the past 20 years. On the other hand, Windows NT combines impressive

interoperability with the familiar Windows GUI. Some organizations will choose to have

both NOSs as part of their information systems, with Unix performing at the high end

server and Windows NT at the desktop and midrange and low end servers. However,

these organizations should recognize the resource costs involved. It is desirable then, that

these two NOSs be interoperable. As a result, we briefly discuss interoperability between

Unix and Windows NT.

Microsoft designed Windows NT to be interoperable with Unix. Having enjoyed

much success in providing replacements to mainframes, Unix vendors are not eager to

provide integration between Windows NT and Unix. The majority of the Unix community

sees Windows NT as a threat rather than an opportunity. [UNIF95]

Some companies have decided to migrate applications to Windows NT in order to

use to use less expensive server platforms; nevertheless, they still want to retain their Unix

104

development environment. As a result, the most typical environment in which NOSs

coexistence is observed today is a three-tier client/server architecture. A three-tier

architecture includes the high end servers, midrange servers, and clients. Many companies

have reengineered their information technology to support distributed computing,

including a back-end server typically running Unix; a mid-level server for file and print

services that uses Unix, Windows NT, or another NOS; and PC clients running a

Microsoft desktop NOS. It is, therefore, in the interest of some companies to have these

two NOSs interoperate and provide maximum services and flexibility to users.

It is recognized that companies that adopt information systems using two or more

NOSs will see an increase in life-cycle costs, training costs, system management costs, etc.

While a two NOS information system is more expensive to maintain, it offers the benefit

of permitting NOSs to be used where they perform best (e.g., Windows NT on desktop

machines and departmental servers, and Unix on enterprise servers). Until a single NOS

becomes available which completely captures the foil range of functionality from desktop

computers to enterprise servers, DOD must consider the cost benefit of adopting more

than one NOS.

E. PROMOTE VENDOR INDEPENDENCE

1. TAFEVFs definition of the objective

TAFIM states that vendor independence will be promoted by applying the

following principles:

• Interchangeable Components. Hardware and software supporting or
migrating to open systems compliance will be acquired or implemented,

105

so that upgrades or the insertion of new products will result in minimal
disruption to the user's environment.

• Non-Proprietary Specifications. Capabilities will be defined in terms
of non-proprietary specifications that support full and open competition
and are available to any vendor for use in developing commercial
products. [DISA03, Vol. 2 p. 2-3]

2. Interpretation of objective

TAFIM uses the term "Promote Vendor Independence" as the title for this

objective and states how to achieve it, but does not provide a definition for it [DISA03, p.

2-18]. Vendor independence is often thought to be one of the results of achieving open

systems. Vendor independence is a benefit to the DOD. With the ability to choose

computer components, both hardware and software, from a variety of vendors, the DOD

has greater flexibility. This greater flexibility promotes competition which in turn can keep

costs down. No longer is the DOD locked into purchasing components from one

proprietary vendor.

The idea is that if the industry followed a specific set of standards for every piece

of software built, then the DOD and other consumers could gain vendor independence.

For example, if Microsoft Word and Corel WordPerfect both followed a standard for

interface commands, styles, etc., then system administrators could swap products and the

users would feel minimal impact. This concept of vendor independence in software can be

compared to SCSI hard drives of today. Computer users can buy a SCSI hard drive from

a variety of manufacturers, all with the same connectors, physical dimensions, etc. This

compatibility allows the decision of which manufacturer to purchase from to be based

more on slight performance enhancements, price, storage size, and guarantees, rather than

only being able to purchase from the company that manufactured the computer.

106

a. Interchangeable components

Having interchangeable components means that the DOD has the ability to

purchase computer components from a variety of hardware and software vendors, as well

as the capability to have these components function together in one system. Independence

from vendors is achieved by developing standards that define the way components from

different manufacturers interact with each other and the NOS. This ability to have

interchangeable hardware and software components provides several benefits. Benefits

include lower costs, a lower investment risk, greater flexibility, and greater scalability. All

of these benefits provide increased economic advantages to the DOD.

Interchangeable software components require software be portable and

cross-platform compatible. As discussed earlier in this chapter, portability is essential to

any DU COE information system and lends itself to supporting independence from

vendors. This benefits the DOD. One benefit, lower costs, results from the ability to port

applications from one NOS to another, due to increased competition. With portability,

programs written on one computer system would be able to run on another computer

system unchanged, merely recompiled. Both time and money are saved since production,

distribution and training costs are reduced because the number of duplicate applications is

reduced.

Interchangeable components also result in reduced investment risk. If

components are made to be interchangeable, organizations reduce their exposure to

uncertain markets because new software and hardware is developed according to

published open systems standards. No longer will users be locked into particular hardware

and software solutions. Because of standardization efforts, there is little pressure to make

107

a large initial investment in new technology, which might not be mature. Instead,

organizations will be able to scale or upgrade their open systems according to their own

needs, on their own schedule. This independence from vendors will enable organizations

to increase their leverage of technical resources, by not requiring them to rely on

proprietary vendors.

Independence from vendors has been pushed recently in the market. One

recent implementation of this concept is called "plug and play." "Plug and play" is a

notion of hardware and software components working together like black boxes to

perform a task. The user is not concerned with how the components perform the task,

only that the task is completed in the same consistent manner, regardless of the

manufacturer. If the box breaks, the user can simply go to any vendor and purchase a

replacement that will plug into his system and perform the same task.

In order for "plug and play" to work, the NOS must be able to support it.

This requires that the NOS be capable of accomplishing several tasks. The NOS needs to

be able to communicate with hardware, use generic drivers, and set Interrupt Request lines

(IRQs) and High Memory Addresses. With "Plug and Play," the NOS is able to perform

these functions transparent to the user.

NOSs need not only support interchangeable components, but they need to

be interchangeable themselves. This means that a NOS needs to function on a variety of

hardware types (e.g., RISC, CISC, etc.). The user should be able to remove his current

NOS and install a new one, maintaining functionality of both hardware and software.

In order to accomplish these tenets, the NOS must be platform

independent. Therefore, it must be written in a compilable third or fourth generation

108

language (3GL or 4GL), not machine language or assembly code. This was the intention

behind the initial variant of UNIX. Originally, Unix was written in B (a predecessor to C,

a 3GL), not in assembly language, so that the author could port it to different platforms

easily. This idea of writing a NOS in a generic 3GL allowed three benefits:

• A compiler could take this "portable" code and compile it for the machine in
question.

• It was easily changeable and adapted to specific needs.

• It could be implemented on smaller computers (Mini and Micro computers).
[ARN093, p. 2]

The second benefit resulted in hurting the commercial viability of Unix as

much as it helped the educational communities. As each user adapted his variant of Unix

to fill his needs, it became incompatible with another user's adaptation. With all the

modifications made to Unix, it became difficult to develop an application that would

operate on more than one variant of Unix. This lack of portability has come full circle

over the years as we now see the Unix community trying to move back towards NÖS and

applications portability.

b. Non-proprietary specifications

Non-proprietary standards are well publicized and available to any vendor.

They evolve through industry consensus, and are freely available so that vendors can

implement them to develop products that compete in the market place. There are

numerous non-proprietary standards in existence today.

Non-proprietary specifications take standards one step further. Standards

apply to a group while specifications apply to an instance. A good example of a non-

109

proprietary specification is TCP/IP. Originally developed by the DOD, any manufacturer

or software developer can make products using these protocols and not pay a licensing fee

or worry about getting sued.

Proprietary standards are developed by a specific vendor. Their future

development is controlled by a single company. There are also many examples of

proprietary standards. Examples of proprietary protocols include: AppleTalk, SNA, and

SPX/EPX. Each of these protocols was created by one vendor and that vendor has

maintained control over the migration and changes for that protocol. Typically, other

vendors must pay a licensing fee to implement a vendor's proprietary standard. This type

of standard is usually well defined and supports very good interoperability with other

computers that use the same protocol.

Non-proprietary standards and specifications are good for the DOD

because they prevent the DOD from becoming vendor dependent. Procurement rules limit

the language used in contracts by the DOD, often preventing language that yields vendor

specific contracts. A non-proprietary standard allows multiple vendors to try their hand at

delivering solutions to problems that the DOD needs to solve. By having standards open,

vendors do not have to follow a vendor-specific standard. Following proprietary

standards requires third party vendors to acquire a license from the standards' owner.

Even if a proprietary standard was followed, and the vendor published the standard and

charged nothing to license it, the perception would still be that the proprietary standard

owner had an unfair advantage.

110

3. Analysis of the Unix architecture

Unix promotes vendor independence in a variety of ways. Because variants of the

Unix NOS are freely available and readily adaptable, many vendors market versions of

Unix. Vendors have traditionally taken the Unix kernel and added their own proprietary

features to it. These features optimize their Unix variant to fill the market's needs.

Several variants of the Unix NOS (e.g., LINUX and Berkeley Software Design Inc.

(BSDI)) are open enough to allow for easy kernel modification or security enhancements

[HUDG96]. For the most part, Unix variants are packaged with particular hardware, so

they are closely tied to a single hardware platform.

a. Interchangeable components

The Unix NOS has long embodied the belief of interchangeable

components, and thus Unix workstations have always supported it. An example of this

are the SCSI peripheral devices which do not require the manipulation of IRQs that are

required on Integrated Drive Electronics (IDE) and Enhanced Integrated Drive

Electronics (EIDE) drives of WINTEL computers. SCSI is the dominant Unix

input/output (I/O) interface standard, but many Unix vendors support other interfaces.

Parallel and serial interface standards, more often associated with (e.g., RS-232 Serial

Interface) are also supported by Unix. Even standard Enhance Industry Standard

Architecture (EISA) expansion slots are supported by most Unix workstations.

Unix NOS itself is interchangeable to a great degree. Because the NOS is

written in C, it can be easily recompiled for different platforms. It is important to note,

however, that the vendor must do this recompilation because the code usually belongs to

111

them. As mentioned earlier, LINUX and BSDI are exceptions to this and allow the end

user to make necessary modifications, before the end user compiles the code. Unix code

is currently available for many platforms, both RISC and CISC, including traditional

workstations, PCs, and Macintoshes.

b. Non-proprietary specifications

Unix has a reputation in the computer industry of being an open operating

system. This is largely due to the history of Unix. As previously discussed, after being

developed, Unix source code was given away to universities by AT&T. Because Unix has

been available for more than 20 years in an open format, most of the protocols and

standards that it relies upon are open. Different publishers of Unix NOSs have, over the

years, included their own proprietary changes to the NOS to tailor its functionality. The

problem is that with each change, the NOS is less compatible with other Unix NOS

variants. The industry now realizes that this hurts Unix as a whole because software

manufacturers must spend extra effort to make their products work on all the different

variants. There is now an industry wide push toward interoperability, which has led to

several open systems standards, as discussed earlier.

The Unix NOS also provides an additional benefit in that it integrates the

same open systems network protocol that is used on the Internet: TCP/IP. Unix

workstations talk to each other via TCP/IP, and even their printers have IP addresses.

This has led to the easy adaptation of Unix into the Internet and secured its position as the

leading Internet server.

112

Unix does support POSIX 1003.1 and 1003.2. However, these standards do not

cover all the APIs necessary to provide a user-friendly GUI. As discussed earlier, a GUI

is necessary in today's fast-paced, limited training time, military environment. Motif is a

style guide, while X-Windows and the Common Desktop Environment (CDE) are

vehicles, designed to this deficiency in POSIX.

Motif is based on the X-Consortium's X-Windowing System [MOTI96], "Motif is

a widely-accepted set of user interface guidelines developed by the Open Software

Foundation (OSF) around 1989 which specifies how an X-Window System application

should 'look and feel'" [MFAQ96]. Motif, the de facto GUI standard for Unix

workstations, includes:

• A window manager client called MWM

• A user interface style guide (published by Prentice-Hall)

• C-language programming libraries to help programmers develop Motif-compliant
applications

• A user interface scripting language (UIL) that programmers can (optionally) use to
specify their user interfaces [MOTI96]

Although the most recent version of Motif is version 2.0, most UNIX

workstation vendors are currently using older versions, either 1.2.4 or 1.2.5. This is

primarily due to the fact that version 2.0 was introduced recently. [MOTI96] Hewlett-

Packard's TAC-4 computers are shipping X-Window system Version 11 Release 5

(XI1R5) that is based on Motif 1.2.5 [HEWP95, p. 4].

Version 1 of the Common Desktop Environment (CDE) is based on Motif

1.2.5. The CDE was an effort by Unix vendors such as Sun, HP, IBM, and Novell to

standardize on a consistent GUI appearance. This effort has paid off with these and other

113

companies shipping CDE with the latest version of their OSs. CDE goes one step further

than just appearance of the GUI by giving software development tools to software

developers as well as a controlled set of APIs. The development of CDE was recently

taken over by the OSF. They have subcontracted development work to the X Consortium.

[DTKS96]

Unix embraces many open systems standards. TCP/IP, Motif, and POSIX

are among these standards, but this certainly does not comprise a complete list. The

standards discussed are merely some of the more important examples. Nonetheless, they

serve to demonstrate the Unix industry's commitment to adopting open systems standards.

4. Analysis of the Windows NT architecture

a. Interchangeable components

The PC revolution has grown up around the idea that inexpensive, easily

interchangeable components will proliferate computers onto the desktop. By embracing

the concept that a solution which is inexpensive but effective is more likely to survive than

a concept that is higher quality but more expensive, the PC market has flourished.

[GANC95, p. 7] Due to this philosophy, NOSs which are designed for PCs recognize a

large number of different hardware products from a large assortment of vendors. The

Windows NT NOS is a prime example of this. The version of Windows NT compiled for

a PC compatible computer can recognize different busses, peripherals, protocols, and

designs (e.g., SCSI, IDE, E-IDE, Micro-Channel, VESA, ISA and PCI).

This provides a tremendous amount of vendor independence. Users have

the capability to purchase hardware components from a variety of vendors to run on their

114

PCs (as long as the hardware works together within the PC) with the confidence that their

new hardware will be supported by Windows NT. The wide variety of hardware

supported also enables users to take advantage of using older components to allow

migration to newer systems without having to purchase new hardware. This allows users

to upgrade their systems based on their needs.

Windows NT is also designed to be portable and platform independent.

This reduces the need for a consumer to rely on one vendor for a particular hardware

solution. Window NT was designed to run on both the Intel x86 CISC family and RISC

based processors. It supports a wide range of processors including: 32 bit x86 micro-

processors, Intel Pentium, PowerPC, MIPS, R4000, and Digital Alpha AXP. Supporting

a wide range of hardware platforms also enables the DOD to migrate to Windows NT

without having to invest in a new hardware infrastructure.

There are, however, some areas of concern here. Windows NT is primarily

written in C and therefore can be recompiled on different systems with a system specific

compiler. However, Microsoft felt that the C programming language was not optimized

well for some performance intensive tasks. Microsoft felt that the performance penalty

was large enough to warrant rewriting some of the code in assembly language. This

portion of the code must be rewritten for every platform that NT is ported to. [RULE95,

p. 9]

Additionally, application programs which are written for NT on an Intel

processor will not run on a MIPS machine. This is because 3GL languages are compiled

into machine language and machine language is platform dependent. The code for the

application program must be recompiled for each new platform. DOD organizations need

115

to keep this in mind when they purchase new hardware running Windows NT and expect

to be able to run their existing software.

b. Non-proprietary specifications

Although Windows NT is proprietary, it does support some non-

proprietary open systems standards. One example of this is the Posix sub-system

contained in NT. This Posix subsystem contains the entire API defined by IEEE's 1003.1.

Support is limited when it comes to IEEE 1003.2, the portion of POSIX which provides a

command-line interface standard as well as certain utilities (e.g., the vi text editor).

[BARA93, p. 142]

Another open systems standard included in Windows NT is TCP/IP. The

use of TCP/IP is built into the NOS and allows connections to the Internet or to Intranets.

However, in Windows NT environments, TCP/IP can only interact with other TCP/IP

systems via low-level functions like FTP and ping. This is because Windows NT fails to

support all of the TCP/IP protocol stack. For example, it fails to support Routing

Information Protocol (RIP), a protocol used by routers to communicate with each other.

This lack of support makes it difficult for Windows NT to communicate in some TCP/IP

environments. [RULE95, p. 327]

5. Summary of findings

Clearly, TAFIM stresses in this objective that vendor independence is achievable

by moving towards open systems. To that end, there must be compliance by the NOS to

some standards. In comparing the two operating systems, Unix has a rich history of

supporting open standards. Although NT does support some open standards like POSIX,

116

its adherence to the POSTY Oton^,^ • •
POSIX standard ,s incomplete. This causes a lack of support for

— —hue applied tba, are cont^d in POSIX Due t0 windows ^

«. „atoe, the lack of complete ^^ ^ ^ ^ ^ ^

NT applications.

«- « re,y o„ a command-line user interface. This is one lnherent weakness „

POSrx.especi.^.od^srap^co^er^,^,^^^^^^

for a GUI, the MOTIF style guide using X-Windows bu, NT ■ .
g A windows, but NT is not compatible with these

standards.

Windows NT has its own proprte^ Win32 API. This m „ „^ ^

operate an appheation h, the GUI NT frommen.. The ^ ^ j$ ^ ^

deveiopers to create programs for a Windows NT en.ronme», tha, is PGSTX compile*

develop a compete 0pe„ systems program on ^ ^ ^ ^ ^ ^^

Win32 AP, «^standards are no, controlled by a single eompan, 0pCT „,

however, a major focus of the Du COE.

The Common Desktop Environme* (CDE) i„i,iative is . strong move ^ ^

programs to he deveioped for multiple platforms using . ^ „„, . ^ ^ ^^

interface. This capability, combined with the POSIX APT* ..
me ruMX APIs, allows complete program

development.

117

Both NOSs support interchangeable components. Drivers for hardware have

traditionally been supplied by the hardware vendor, but the trend is toward including

generic drivers in the NOS. This will complicate the process of portability of the NOS to

different machines, because drivers must be written for all hardware types. Also, they are

not usually covered by a set of standard APIs, and therefore must be written in assembly

or machine language. This could be an exhaustive task which must be repeated each time

the NOS is ported to a different platform, inhibiting easy portability.

Given that both NOSs are written in C, theoretically both provide the same degree

of portability. As stated, both NOSs would need to be recompiled for the specific

hardware they were to run on. The availability of Unix over the years has resulted in Unix

being recompiled on many machine types. Windows NT has already been ported to

different machine types.

When examining the two principles that TAFIM believes will promote vendor

independence, it is evident that both NOSs support a fair degree of interchangeable

components; However, Unix supports a wider range of non-proprietary specifications.

While it is apparent that Microsoft partially subscribes to the ideals of open systems in

developing a NOS that provides some degree of portability, scalability, and multi-platform

capabilities, the standards that they rely on are truly proprietary. This results in a reliance

by programmers and developers on Microsoft.

118

F. REDUCE LIFE CYCLE COSTS

1. TAFIM's definition of the objective

TAFIM's definition of reducing life cycle costs will be realized by applying the

following principles:

• Reduced Duplication. Replacement of "stovepipe" systems and
"islands of automation" with interconnected open systems, which can
share data and other resources, will dramatically reduce overlapping
functionality, data duplication, and unneeded redundancy.

• Reduced Software Maintenance Costs. Software complexity may
increase with increased user demand for services such as distributed
processing and distributed database services. However, if the principles
described above are implemented, reductions in software maintenance
will be realized because there will be less software to maintain. In
those cases where the number of DOD users is small, increased use of
standard non-developmental software will further reduce costs since
vendors of such software distribute their product maintenance costs
across a much larger user base.

• Reduced Training Costs. A reduction in training costs will be
realized because users rotating to new organizations will already be
familiar with the common systems and consistent Human Computer
Interfaces (HCI). [DISA03, Vol. 2 p. 2-3]

2. Interpretation of objective

The reduction of life cycle costs is a major concern in today's downsizing

environment. The accomplishment of reducing costs over the life cycle of an information

system relies more heavily on the maintenance costs than the initial acquisition cost.

TAFIM outlines three ways to accomplish this goal.

119

a. Data duplication

The first method that TAFIM describes that will contribute to reducing life

cycle costs is removing data duplication. Traditionally, the DOD has developed

information systems that have resulted in overlapping functionality, and widespread

duplication. NOSs need to be designed with the tools to promote interoperability between

systems and data sharing across applications. With these tools, data duplication will be

reduced.

An example of widespread data duplication today is the current structure of

databases in the DOD. Databases for the DOD are maintained in multiple locations and

often contain overlapping information. The compilation of necessary data located in

different databases is difficult. When multiple OSs are in use, data sharing is compounded.

The DOD needs OSs which promote ease of data sharing and interchangeability so that it

can eliminate data duplication.

The widespread overlapping functionality is partially due to the lack of

connectivity of computer systems. If all information systems could communicate via

standard protocols, then databases could reside at multiple locations and be called upon

for information as necessary. Other database management problems such as data format,

structure, relational verses flat file format, etc., need to be solved also. A NOS with open

standard addressing data format (e.g., ODBC), standardized SQL queries, and file formats

would allow development of interconnecting databases. The long-standing problem of

data and software duplication is something that continues to plague information

technology interConnectivity. Global access to information through a common

infrastructure, like the Du COE, is intended to help reduce data duplication.

120

A NOS can also promote eliminating data duplication by allowing

applications to interoperate to perform common tasks. A spell checker is one example of

such an integrated application package that operates under the NOS. A word processor

might call on a spell checker to correct errors in a document. An e-mail application on the

same workstation may also have its own spell checker; similarly a spreadsheet application

may contain a third and separate spell checker. The current trend of "Office Suites" helps

eliminate duplication by allowing several applications to share common tools, like spell

checkers. Another source of duplication is applications from different vendors, because

these applications will typically provide their own tools. This duplication could be

avoided if developers agreed on standards, that would be supported by OSs. If only one

tool is needed on a workstation, then applications should be able to access a single tool.

Such standards are starting to emerge from vendors, but are not widespread yet.

As an example, Apple Computer has proposed a standard to permit free

communication between small applications or "editors" while keeping the actual inner

functionality of the applications proprietary. Apple Computer's latest developmental OS

(MacOS 8) attempts this via a standard they call OpenDoc. "Editors" are placed in a

central location that all applications can access and with a specific input/output format, but

the heart of the application and the algorithm, remain proprietary.

Data duplication will not be significantly reduced until it is made easy for

developers to do so. Methods to reduce data duplication are still not widespread and, in

fact, market trends are actually working against the reduction of data duplication. A

major factor contributing to the failure of software developers, as well as systems

designers, is to embrace reducing data duplication is the increasing advancement in

121

hardware. As memory and hardware prices continue to decline, there is little need to go

to the extra trouble of making programs share data. Increasingly there is more storage

space for less money; vendors may not be concerned with integration applications. Cross-

application interoperability as well as cross-system interoperability are essential to help

reduce unnecessary data duplication. As discussed earlier in this chapter, there are

methods available to achieve better data sharing. NOSs need to be designed to support

these methods.

It is important to note that some duplication is not bad. In mission critical

systems, even a small interruption of service is intolerable. Some built in duplication

provides fault tolerance in the systems. One implementation of deliberate duplication that

supports fault tolerance in a system is using a Redundant Array of Inexpensive Drives

(RAID). RAID is a means of storing data in multiple locations so that if a hard drive

"crashes", a backup is immediately available. Other methods of redundancy that can be

purposely built into NOSs are backups at set intervals and disk mirroring.

b. Software maintenance costs

The next area of concern that TAFIM addresses regarding life cycle costs

is software maintenance costs. Norman F. Schneidewind, a Fellow of the IEEE, defines

maintenance as the "modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a changed

environment." Furthermore, he states that there is a maintenance problem because:

• 75-80 percent of existing software was produced prior to significant use of
structured programming.

• It is difficult to determine whether a change in code will affect something.

122

• It is difficult to relate specific programming actions to specific code. [SCHN87, p.
303]

He also makes the point that programmers cannot perform maintenance on systems which

were not designed with maintenance in mind. Finally, he points out that good people have

not traditionally been attracted to the field, stating that, "To work in maintenance has been

akin to having bad breath." [SCHN87, p303]

Despite all the problems associated with software maintenance, it deserves

our attention. A consultant from Anderson Consulting states that "for a system with a 5

year life, up front costs are [only]... 35-40%. If you had a 7-8 year life, it might go closer

to [just]... 15%" [HANT96]. Up front costs include:

• Software license fees or salaries for programmers (if developed in-house)

• Hardware

• Network installation

• User training

• MIS training

• Implementation services (i.e. consulting) [HANT96]

This leaves the bulk of software costs come from the reoccurring costs from ownership.

These include:

• Software maintenance fees

• Software upgrade licenses if the software was purchased (depending on the deal)
or the cost of maintaining in-house and/or contracting programmers to maintain
and enhance custom software

123

• Hardware upgrades (because "software always gets fatter and not skinnier.")9

• End user technical support

• Ongoing training for new users

• Operational costs such as hardware maintenance, making backups etc. [HANT96].

The idea that maintenance costs are the area in which the DOD spends the

bulk of its information systems, is echoed throughout the book Software Maintenance

Management, by Lientz and Swanson. Lientz and Swanson cite numerous examples of

studies which place maintenance figures from 50 percent to 90 percent over the life cycle

of a typical system [LIEN80, p. 4-5]. With most of the life cycle costs associated with

systems attributed to reoccurring costs, it is obvious that DOD's efforts focused on

maintenance would reap the most benefits.

In the past, the DOD developed much of its own software. Now, however,

the DOD has realized that in most cases it is more cost effective to purchase software

commercially. Commercial software developers, in most cases, have the resources to

create applications that fulfill many needs of the military. In many cases, the DOD's needs

are similar to commercial industry's needs. To that end, instead of custom developing

applications, and maintaining DOD developed software, the DOD's current policy is to

purchase COTS where appropriate. Instead of maintaining DOD-developed software, the

DOD will purchase new or upgraded software (where possible), similar to businesses in

the commercial sector. However, it is important to note that there is still a maintenance

9 Mike Gancarz states in The UNIX Philosophy that one major mantra of the Unix programming
community is that portable code always wins over compact code; after all, new hardware will be out next
year that will run the software quicker.

124

function because frequent upgrades must be made and tailored to be compatible with the

NOS (e.g., use of network drives, program and data sharing, use of drivers).

The U.S. government currently has several NOSs in use. Some, such as

Unisys' CTOS NOS used by the Coast Guard, are used only by the Coast Guard and the

developer. Consequently, the entire cost of upgrades, bug fixes, etc., are borne by the

government. Some of these costs could be avoided, or reduced by migrating to

commercial OSs.10 Many of the life cycle costs associated with maintenance, although

not eliminated, are reduced by such a migration.

The use of commercial NOSs would also mean a larger base of users,

spreading the cost of the software product over the entire consumer base, including the

U.S. Government. Distributing the costs over a large base of users, reduces software

maintenance costs for the DOD over the life of the software. When purchasing

commercial software products, the manufacturer (and subsequently all the users, not just

the DOD) would bear the cost of developing, maintaining, and documenting the software

product. Presumably there would be more product demand for software developed for the

DOD and the commercial sector. This increased demand would provide more incentive

for manufacturers to maintain and enhance software that contains the newest technologies.

Another concern is whether the DOD has the resources necessary to

develop increasingly complex OSs, or even why DOD would want to. There are many

OSs in the market place that fill most of the DOD's needs for automated information

10 The Coast Guard is currently in the process of migrating from CTOS to Windows NT

125

systems. Vendors gain the advantage of economy of scale because of specialization and

mass production.

Another way to reduce DOD software maintenance costs is to reduce the

number of applications, OSs, and programming languages that are in use and perform

similar or identical services. This area has historically been a source of high costs in the

DOD. Figure 15 displays the rising dollar amounts of DOD software costs.

CONSERVATIVE DOD SOFTWARE COST PROJECTION

TOTAL

0

MAINTENANCE

DEVELOPMENT

T—i—i—i—i—i—i—i—i—i—i—i—i—i—i—r
1992 1994 1996 1998 2000 2002 2004 2006 2008

Years

Figure 15. DOD Software Cost Projection [RAME95]

The more OSs, programming languages, and applications that the DOD

supports, the higher are the costs associated with maintaining, developing, and training.

This problem has been addressed in several DOD directives and programs; one example is

the Ada mandate. The Ada mandate was an effort by the DOD to reduce the number of

general programming languages in use, which had grown to 450 in the DOD. In fact,

from 1968 until 1973 software costs increased in the DOD by 51 percent. The estimated

126

number of word processors in DOD use was said to be between 500 and 1500.

Supporting so many applications, OSs and programming languages results in greater

maintenance costs. If the number of NOSs and applications are decreased, then the

number of trained personnel would decrease. [CS2970, p. 1-7]

c. Training costs

The last factor TAFIM addresses when describing methods to reduce life

cycle costs is training costs. Anderson Consulting's list of life cycle costs was dominated

by costs associated with training. Training costs are often difficult to measure. Not all

training costs are spent as an outright expenditure in the DOD. It may be easy to attach a

cost associated with sending personnel to a training program on a software product, but

this leaves out many hidden costs.

End users gain the majority of their software knowledge through using a

particular application. When users have to learn several different software applications,

they learn best on the job. On the job training results in lost productivity instead of a

outright expenditure and is one of the major hidden costs associated with training.

Training costs can be reduced by migrating to NOSs that are familiar to

end users. Familiarity with a NOS may eliminate the necessity for users to participate in

training programs. If users were initially familiar with a NOS, training could focus more

on job related tasks, not basic familiarity with a NOS. Using more common industry wide

NOSs would also increase the level of expertise in those NOSs within DOD organizations.

A familiar and intuitive GUI keeps training costs down, either outright

expenditures or hidden costs. A familiar GUI should be one that a user encounters on the

127

job, as well as in the home and in formal schooling. Tasks that are difficult to perform due

to non-intuitive interfaces will decrease the willingness of users to learn them.

The use of on-line documentation is another way to keep training costs

down. Training manuals are helpful only if they are easily accessible. It is very time

consuming for a user to search through indices. Space and weight are limited on ships and

aircraft, so it is impossible to have a copy of every manual at every workstation. This

makes having reference manuals on-line extremely desirable.

A benefit of on-line manuals is being able to quickly search for a given

"keyword." Many software developers are going one step further and making items which

actually walks the user through the steps to perform a task (Novell calls this feature a

Coach, Apple calls it a Guide). Apple has taken this even further in their latest OS,

MacOS 8.0, by simply asking for the information needed and letting the software actually

perform the task. NOSs should be designed to not only promote easy task

accomplishment, but also contain support methods that make it easy for users to inquire

about how to do things.

Portable software also reduces the need for user training. Applications can

be designed with the ability to be moved from one environment to another with little or no

modification. This reduces the need for users to learn several versions of an application.

A good example of this is WordPerfect. Corel ported WordPerfect from the Windows

environment to the Unix environment. The program retains the same look and feel, as

well as functionality. As APIs become more standardized, it is easier for applications to

be ported. A NOS that can support such portability would reduce training costs.

128

3. Analysis of the Unix architecture

a. Data duplication

The Unix approach to avoiding data duplication and removing overlapping

functionality can be best described by understanding how Unix was developed. Unix was

developed as a multitasking, multithreaded NOS. From its origin, it was developed as a

multi-user NOS [GASK95, p. 1086]. Because of the need for flexibility to support

multiple users, Unix needed an easy way to share data. Methods within Unix that support

data sharing were described earlier under user productivity. The sharing of data helps to

remove unnecessary duplication.

Interoperability provides another method for reducing overlapping

functionality and data duplication. By allowing all computers on a Unix network to

communicate via the same set of standard protocols, like TCP/IP, information can be

shared throughout the network. Information that can be obtained by accessing remote

computers throughout the network will no longer be required to be stored on local

workstations. Physical network connections are not enough to accomplish this.

Interoperability and connectivity are the keys in reducing the need for organizations and

commands throughout the DOD to store the same information.

b. Software maintenance

In a Unix system there are several built-in methods that make software

maintenance relatively easy. The history of Unix accepting and promoting open systems

standards and its standing within the academic community also helps limit maintenance

costs.

129

The Unix architecture provides life cycle cost savings, such as the use of

pipes. Pipes are a Unix characteristic that help promote a reduction of software life cycle

costs. Pipes are a means of porting the output of one file to the input of another file

without the use of a temporary file. In Unix, everything is treated like a file, and all files

are treated as a stream of ASCII characters. The keyboard in known as the stdin

(standard in) file and the monitor is the stdout (standard out) file. Since everything,

including devices, is treated as a stream of characters, it is easy to view and manipulate

data.

Programs are considered merely as filters of data, not creators of data. In

order for these filters to be easily created, understood, and modified, they must be kept

simple and small. If a large task is to be kept simple, it must be broken into many parts. If

a program is comprised of many parts, it must be easy to pass data back and forth between

these parts. Pipes make passing data between modules simple. These small modules make

modifications easier, because the programmer must only understand one module at a time

as modifications are made.

The loss of funds spent on software that is never delivered is another

problem that haunts the DOD. Because applications in the Unix environment are merely a

collection of smaller modules and the pipes that connect them together, programmers have

the ability to isolate and trace data as it flows through the program, module to module,

during the early stages of prototyping. If problems are encountered, isolation of modules

is possible by looking at the data, via pipes, before and after each module to determine

problem locations. This ability to isolate problems and rapid application prototyping

130

speeds up the development process as well as ensuring that the final product is exactly

what the user wants. [GANC95, p. 58]

Software maintenance has always been a complex and cumbersome task,

which becomes more complex as the number of copies of an application increase. Due to

the multi-user, host-based environment in which Unix operates, Unix programs are

designed to be network centric. This allows network administrators to install a single

copy of a program on a server and have clients access this copy as necessary. Preferences

(such as the appearances of the toolbar) are stored in the home directory of the current

client (user, not machine). This single copy (sold with a site license for the required

number of users) is relatively easy to upgrade and maintain, thus reducing time and labor

costs.

With open systems and a set of standards (e.g., POSIX), the industry

follows a set of standard practices that allows IT managers to develop software modules

that have "black box functionality". Functionality within the box becomes secondary to

ensuring the box delivers the desired outputs. This principle applies to NOSs. Treating

NOS components as black boxes reduce maintenance costs across multiple software and

hardware vendors.l1

As stated earlier, the POSIX standard allows programs to use a standard

set of published APIs to provide a standard interface with the NOS. A standard set of

APIs will greatly reduce the complexity of developing software on different NOSs, which

1] The authors note that this level abstraction is extremely difficult to achieve and not present in
the market today.

131

currently have their own proprietary set of standards. A common set of APIs means

reduced complexity, increased ease of maintenance, which reduces life cycle cost.

Since the original purpose of POSIX was to define a standard open

interface, based on the Unix system, Unix systems comply with, or are easily adapted to

meet this portion of the open system requirements for the DU COE. In fact, the whole

intent of the original Unix design was to be open, but it has been changing for years and

branching in several slightly different directions. Because of this divergence, Unix vendors

have been eager to adopt open systems standards to allow applications to function on

different variants of Unix and to converge on a set of open system standards. Spec 1170

is one example of a recent open Unix based standard that attempts to achieve this

objective. It is intended to provide standards that will allow organizations to mix and

match Unix NOSs and platforms compatibly. [WEBS94]

Basing an information system in the DOD on Unix enables the DOD to

capitalize on academic resources. Since Unix source code has historically been readily

available and inexpensive, it has flourished in the academic environment. "[Unix] is the

undisputed system of choice in the academic world." [GANC95, p. xix] Because Unix

was written in a programming language eventually called C, it has traditionally come

packaged with its own C compiler. Even today, Unix NOSs come with a C compiler; for

example Sun Solaris v2.3 comes packaged with a Sun C compiler. Not surprisingly,

programming courses in C and C++ are the most common programming languages

colleges and universities teach in the US. However, it should be noted that applications

written for Unix are several times more expensive than their Windows counterparts.

132

The preponderance of Unix in the academic world has produced a wealth

of Unix experience. Programmers, majoring in computer science, right out of college have

experience writing code for the Unix environment. Although it is true that C and C++ are

portable, changes must be made to code when switching from the NOS that the code was

written for to another NOS. The more specialized the NOSs the DOD has, the more

specialized the training must be, and the greater the cost to the DOD.

c Training

Unix source code was made available to other groups within AT&T and,

for educational purposes, to universities [MICR03, p. 2]. The academic community has

produced Unix system administrators for years. Unfortunately, government salaries are

such that it is difficult to attract people with Unix skills. If it were possible to hire these

people in large numbers, training costs would be reduced. The reality is that the

government has to provide training in Unix, either in-house or under contract.

Another aid in understanding Unix is the vast amount of information

published on the Internet. Since Unix has been available for many years, coupled with its

openness and academic ties, much has been published to aid others in understanding the

system. These documents can be useful tools in simplifying Unix administration.

4. Analysis of the Windows NT architecture

a, Data duplication

Microsoft takes an approach similar to Unix in avoiding data duplication.

Windows NT is not a true object-oriented NOS, but it does represent internal system

133

resources as objects. This helps reduce data duplication as described below. Microsoft

defines objects as a combination of three traits:

• Attributes in the form of program variables that collectively define the object's
state.

• Behavior in the form of code modules or methods that can modify those attributes.

• An identity that distinguishes one object from all others.

Objects communicate by a form of message passing. This message passing

system is analogous to the Unix file metaphor and pipes, only more powerful. NT treats

all things that Unix calls files as objects, but also includes "processes and threads, shared

memory segments, and access rights." [NTUX95, p. 5] OLE is a method provided and

supported by Windows NT to share these objects between applications. By treating

everything as objects, a program can pass information between processes, thus reducing

redundancy. These feature help provide data sharing between applications, eliminating the

need for data duplication.

b. Software maintenance

Traditional client/server PC networks require the installation of executable

programs at the server and support files at the client. NT does not change this paradigm;

software must still be installed at both locations. It is also important to note that software

can be designed for the client/server system in different ways. One method is to have a

portion of the program reside on the server and called upon as necessary. A client acts

like a dumb terminal. Limited pre-processing sometimes takes place on the client, but the

heart of the processing takes place on the server. Also, Windows NT allows the

installation of client portions or even entire stand alone applications to be installed from

134

the server. The application can be "pushed" or "pulled" along the network to the client

machine where it will reside on the hard drive. This prevents the system administrator

from having to be physically present at all machines in order to install programs. This

saves time and money, and this savings grows as upgrades, new programs, and additional

workstations are installed.

Power failures and brownouts are a fairly common occurrence. Universal

Power Supplies (UPS) provide emergency power in such an event. Many UPS devices

today allow for direct connection to the NOS. This allows the NOS to give connected

users notice of the power failure to allow an orderly shutdown and save data. UPSs also

notify the NOS that power has been restored and that shutdown is not necessary.

Windows NT provides a serial port connection to connect to these types of UPS devices.

Windows NT can also be configured by the network administrator to prevent any new

connections during the time period the UPS is providing power. This makes the

maintenance job of the administrator must easier, because time is not spent trying to

recover lost data.

c. Training

Microsoft has been able to increase its market share of OSs in an expanding

PC market. More people are becoming computer literate, and the vast majority of the PCs

in the market place are WINTEL (Microsoft Windows running on Intel processors). This

dominance is mirrored in the DOD. A recent Government Computer News Survey (GCN)

of over four thousand DOD personnel who identified themselves as purchasers and users

of OSs for desktop computers indicated that they rely on Microsoft OSs at a rate of 28-1

135

over the next popular operating system (Interestingly enough, MacOS was second and

Unix did not even garnish enough responses to be rated) [GCNP96, p. 20]. While there is

greater use of Windows for Workgroups and Windows 95 than Windows NT, the survey

shows the base of Microsoft users in the DOD. This has several implications for training

personnel.

With such a large base of Microsoft OS users in the DOD, there is a

substantial amount of knowledge and experience with Windows products. The GCN

survey identified Windows 95 as second best in ease of use, following MacOS. For users

who are experienced with Windows 95, this could mean a substantial savings in training

when moving to Windows NT, because Windows NT 4.0 has the same interface as

Windows 95 and Windows NT 3.51 can be updated to the Windows 95 GUI with a free

download. Taking advantage of this installed base would alleviate some of the difficulty

associated with transitioning to a different NOS.

Not only would some users be familiar with the interface of the Windows

NT, they would also have the benefit of having worked with Windows applications. For

common applications, like word processors and spreadsheets, DOD would reduce training

costs. Granted, there will be some mission specific applications that will be new to users,

but they will at least be familiar with the Windows based interface.

The powerful help features in Windows NT reduces training time and

costs. The help features are easy to use in Windows NT for even the inexperienced user.

Help is available in the form of indexes, search tools, and hyper-text. Hypertext help is

available so that the user can access information from the desktop, rather than searching

through manuals. With application developers following these help standards, users will

136

be able to find answers to their questions faster, be more productive, and learn while on

the job.

Microsoft also provides another method to train users at their workstation

via Wizards. Wizards are used to provide the user with the basic steps needed to

accomplish a task. They are used to help the user to accomplish a variety of tasks,

including installing software, changing GUI features, and performing tasks within

applications. Wizards ask the user questions on what task he wants to perform, and the

information that is needed to perform the task. Some of the more powerful wizards even

perform the task for the user rather than walking the user through the task. This style of

user help greatly reduces the burden on the user. If the user is new, the wizard can walk

him through the task so he gets hands-on experience of how to do the task, using sight,

sound, and even video. The user in effect, learns while doing.

S. Summary of findings

Windows NTs use of the object metaphor allows increased data sharing when

compared to the Unix environment. While Unix does provide for data sharing via pipes,

the Windows NT implementation of this is much more robust and powerful. This

increases Windows ability to increase data sharing and reduces data duplication, thus

reducing life cycle costs.

Perhaps training is the most significant factor in life cycle costs. Given that the

DOD is such a large organization, it is important to implement NOSs and applications that

users will be able to adapt to and be productive with. Windows software is the best selling

OS in the world today, with Windows 95 and Windows NT leading the way. The home

computer revolution has led to Microsoft's selling a projected 70 million units of Windows

137

OSs in 1996 [COMP96]. Windows NT is even predicted to outsell all Unix variants

combined for server application by the end of 1996 [EETI96]. Figure 16 shows the

dominance of Microsoft OSs in the market today, and the predicted market dominance of

Windows OSs, particularly the increasing market strength of Windows NT. This market

presence could be a significant advantage for the DOD, potentially serving to reduce the

cost of training.

1996 OS
Market
Share

Predicted in 1992

Market

Actual 1995
OS Market
Share

1999 OS
Market ^
Share fi

\ ■:

41%

Predicted in 1995

KEV

Others

DOS

Windows 95

Windows 3.1

UniH

Windows NT

Figure 16. OS Market Share [HALF96, p. 52]

While Unix NOSs are dominant in universities, PC systems are prevalent at the

primary and secondary schools. Even with the dominance of Unix in universities, there is

also a trend to require each student to own a PC. This increases the likelihood that many

members of DOD will have been exposed to Windows. A minority of personnel in the

138

service have been exposed to Unix, and fewer still are literate in Unix. With such a

dominate place in the market, exposure to Window's GUI is virtually guaranteed.

Unix was first developed with the idea that its users would be computer literate.

In fact, the "designers of Unix took an inhospitable 'if you can't understand it, you don't

belong here' kind of approach." [GANC95, p. xvii]. This mentality, on the so called

intuitiveness of Unix, underscores one of its inherent weaknesses. In an era where the

trend in computing is to make computers more useful to users, this mentality will not

survive in the market place.

When considering reducing life cycle costs, it would be foolish for the DOD to

ignore the savings in training costs that would be achieved by using a Windows NOS. On

the other hand, if Unix were the dominant NOS in DOD, it would require a substantial

training effort, resulting in substantial costs and reduced productivity.

In conclusion, Windows NT is the more cost effective platform when considering

the life cycle costs of a system based on the DU COE. This conclusion is reached using

the TRM objective as the means of comparison. This is due to reduced requirements for

training and data duplication.

G. IMPROVE SECURITY

1. TAFIM's definition of the objective

TAFIM states that security in information systems that may need to operate

simultaneously in various DOD environments (tactical, strategic, and sustaining base) will

be improved in DOD information systems by satisfying the following principles:

139

• Uniform Security Accreditation and Certification. Uniform
certification and accreditation procedures will not only reduce the time
needed to approve system operation but will result in more consistent
use of security mechanisms to protect sensitive data.

• Consistent Security Interfaces. Consistent security interfaces and
labeling procedures will reduce errors when managing sensitive data
and reduce learning time when changing from system to system. Not
all mission-area applications will need the same suite of security
features, but any features used will be consistent across applications.
Users will see the same security labels in a common format and manage
them in the same way.

• Support for Simultaneous Processing in Single Platforms of
Different Information Domains. Security protection will be provided
for simultaneous processing of various categories of information within
a single system. Information systems that can support multiple security
policies can support multiple missions with varying sensitivity and rules
for protected use. This will include support of simultaneous processing
under multiple security policies of any complexity or type, including
policies for sensitive unclassified information and multiple categories of
classified information. This type of support will also permit users with
different security attributes to simultaneously use the system. Separate
or dedicated information systems for processing information controlled
by different security policies will be reduced or eliminated.

• Support for Simultaneous Processing in a Distributed System of
Different Information Domains. Security protection will be provided
for simultaneous processing of various categories of information in a
distributed environment. This protection will apply to processing of
information controlled by multiple security policies in distributed
networks using heterogeneous platforms and communications
networks. This will greatly extend the flexibility of the system
implementor in providing cost-effective information systems based on
open systems principles.

• Support for Use of Common User Communications Systems.
Security protection will be provided in such a way as to permit use of
common carrier (public) systems for communications connectivity. It
will also permit the use of Department-owned common user
communications systems. This use of public and Department common
user global communications networks will result in the potential for
enhanced cost effective interoperability across mission areas. [DISA03,
Vol. 2 p. 2-4]

140

2. Interpretation of the objective

a. Uniform security accreditation and certification

The federal government has over the years developed a uniform computer

security accreditation and certification system. In August of 1983, the federal government

released the DOD Trusted Computer System Evaluation Criteria (TCSEC). The TCSEC

is more commonly referred to as the Orange Book. The Orange Book was a response by

the federal government to growing concerns about computer security. It was felt that a

standard was needed for the purchase and use of computers in the federal government.

This would develop consistency in security features across government systems.

The Orange Book defines four hierarchical divisions of security protection.

The divisions are called: minimal security, discretionary protection, mandatory protection,

and verified protection. The four divisions correspond to the letters D, C, B, and A

respectively. Each division consists on one or more classes, corresponding to a greater

degree of security. These divisions are designated by numbers. Some classes have only

one division, others have up to three. The higher the letter and number, the more secure a

system is considered. Each class is defined by a specific set of criteria that a system must

meet to be awarded a rating in that category. The criteria fall into four categories:

security policy, accountability, assurance, and documentation. Appendix C contains a

table which details the requirements at each level of security.

The Orange Book states that its evaluation criteria were developed based

on three objectives: measurement, guidance, and acquisition. It was developed to provide

users with a metric with which they can access the degree of security in a system. A user

141

can be assured that a system that has a B2 security rating is more secure than a system that

has a C2 rating. The Orange Book also provides developers guidance to build systems

that satisfy government security requirements. The Orange Book also provides a clear

way to specify security requirements for systems, making it easier for government

agencies to specify requirements in acquiring systems. [RUSS92, p. 104-105]

The Computer Security Act of 1987, Public Law 100-235, was designed to

improve the security and privacy of federal computer systems. It specifically stated

requirements for the minimum security requirements for federal computer systems. It

mandated that all federal computers meet the minimum requirements of a C2 classification,

as outlined in the Orange Book. The law requires that all computer systems that handle

"classified and/or sensitive unclassified information ... shall implement required C2

security features by 1992." [CONS01, p. 8]

Navy Standard Operation Procedure document 5239.15 (NAVSOP-

5239.15) contains the functional requirements for C2 class systems. This instruction is

called the Controlled Access Protection (CAP) guidebook. This guidebook describes the

minimum set of automated controls for DON information systems. Since all DON systems

are considered to process sensitive unclassified data as a minimum, they must adhere to

C2 security requirements as outlined in CAP.

In order to be certified C2, a computer system must meet the requirements

described in the Orange Book for a C2 system, in addition to fulfilling the requirements for

a D and Cl system. D certified systems are systems that are minimally secure, the Orange

Book lists no requirements for this class. Cl systems have limited security features. The

security features of this class are mainly intended to keep users from making security

142

violations. C2 systems provide more stringent security features than Cl systems. C2

systems are systems considered to provide controlled access protection. [RUSS92, p.

156] A C2 secure system offers increased security features in the following areas:

• Discretionary Access Control

• Object Reuse

• Identification and Authentication

• Audit

• System Architecture

• Security Testing

• Documentation

In order to be considered C2, a system must meet the criteria stated in the Orange Book

for each of the areas.

Discretionary Access Control (DAC) is a policy which restricts access to

files based on the identification of users, or a group, to which they belong. This method is

in contrast to Mandatory Access Control (MAC), in which the system controls access;

DAC is applied at the users' discretion. Essentially, a system that uses DAC and is C2

certified must have the ability to distinguish between users.

Object Reuse requires that a system be able to "protect files, memory and

other objects in a trusted system from being accidentally accessed by users who are not

authorized to access them." [RUSS92, p. 118] Where as DAC assigns who can and

cannot access an object initially, Object Reuse controls these features when objects are

reassigned. This is an important feature for a NOS. Object reuse features may include

maintaining a file containing the identifications of users deleted from the system. When a

143

new user is added, Object Reuse ensures that the new identification of the user does not

duplicate the access rights of the same previously deleted user. [RUSS92, p. 118] It also

prevents users from accessing memory which is being used by another user.

Identification and Authorization is a part of all security levels, but it

increased at the C2 level. Basically, this requirement mandates that every user has

unique account name and password. Both of these must be supplied before gaining access

to the system. [RUSS92, p. 124-125] The Orange Book does not state how passwords

should be protected. Passwords remain essential for secure systems.

All passwords are not created equal. Two early computer pioneers, Robert

Morris and Ken Thompson, studied passwords and found that 86 percent of the time they

could guess correctly by using family names, birthdays, street names, common English

words, etc. [TANE92, p. 189]. Their research demonstrates how easily passwords can be

determined if not chosen carefully. Equation 1 shows the importance of requiring

passwords of suitable length. It determines what the length a password should be,

provided that the probability of guessing it is one in a million. The probability P of

guessing a password is given as:

p=G_L*R

S S

can

Equation 1. The probability of guessing a password

where L is the lifetime of the password, R is the number of guesses per unit time that

be made, S is the total number of unique passwords that can be generated, and G is the

total number of guesses that can be made in the password's lifetime. Equation 2 solves

for S, using a lifetime of six months, one guess every second, and a one in a million chance

at getting it right yields:

144

(J L*R
S~ S

P = ^ = ^-^ -^ c-£^ la^days/6months)*8b4UU(gUesses7d^ —
 P K^Wi ~ = 1-58112 • 1013

O.OOOOOl
Equation 2. Determ.ning the number of possible passwords

S then is the total number of possible passwords. From S, we can determine the password

length necessary, stated in Equation 3 as M, to satisfy our given constraints. Now given

that A, the set of possible characters which M is comprised of, contains 94 possible

characters (standard ASCII keyboard characters), then

log A ü^öd = 669 characters log^ log 94
Equation 3. Determining the length of a password

From the parameters that have been chosen, passwords need to be 7 characters long to be

considered good, and these characters are drawn from lower and upper case letters,

numbers, and other keyboard characters.

Audit trails are also necessary for a C2 level secure system. In computer

systems, auditing is the ability to record, review, and examine ah security-related activities

in a ttusted system. The primay reason for audit trail, is that even the most secure

system, are vulnerable ,o attacks and audit trails are an excellent way to determine

whether an attack has occurred and how the attack was attempted. [RUSS92, p. 128-129]

System architecture falls into what the Orange Book calls the assurance

category of a secure system. Although a C2 system's architecmre does no. need to be

designed specifically for security, it must be designed using sound principles. These

include basic concepts like protection of resources and separation of user and system

«motions. [RUSS92, p. ,34] I, also includes features to keep users out of memory areas

where they do not belong.

145

System Integrity describes the concept that hardware, firmware, and

software must work, and be tested to ensure that they will continue to work, properly.

One aspect of System Integrity involves correct initialization of system resources. This

requirement is usually satisfied by vendors providing system tests during startup that are

included in CMOS.

Security Testing involves evaluating a system to determine whether the

system functions as described in the documentation. There are two basic types of security

testing: mechanism and interface testing. Mechanism testing is the testing of the security

mechanisms provided by MAC, auditing, labeling, and authentication and identification.

Interface testing involves testing all the user actions which request security functions.

[RUSS92, p. 142]

The final category described in the Orange Book is documentation. This is

sub-divided into various sections, but the basic requirements for a C2 system are that a

manual be provided which explains why security is important, how to administer DAC,

how to administer identification and authentication, and how to administer auditing

capabilities [RUSS92, p. 151]. The security documentation provides a description of the

manufacturers' view of security for the system administrator.

Fundamentally, a C2 certified information system must protect systems

resources via access control features. TCSEC provides a standardized method for

evaluating systems against a defined set of requirements. This satisfies TAFIM's intention

of having a uniform security accreditation and certification process. However, the

requirements set forth in the Orange Book for a C2 certified system only meet part of the

requirements that TAFIM describes later in this objective. "C2 does not have any

146

provision for viruses, control encryption, integrity checking, network interconnections, or

remote accessibility. Any computer professional working for a major organization knows

that without these features, security remains virtually non-existent." [SCHW95] Similarly,

the security demands of the DU COE are far greater than security measures contained in

C2 level systems. These additional needs are outlined in the remaining parts of the

objective.

b. Consistent security interfaces

Consistent user interfaces not only results in lower training costs, but

enhance understanding of security procedures. The demands of the DII COE require that

in many cases the network be easily and quickly managed by non-IT professionals. This

requires easily understood and administered security features. Again, a GUI should be

consistent and intuitive throughout, and the interface to the security features should be

consistent with the GUI

c. Simultaneous processing at multiple security levels on a single
platform

A system which handles multiple information classifications at a number of

different security levels within a single security system is called a Multiple Level Security

(MLS) system. Two things are required for a MLS system: MAC and sensitivity labels.

MAC is an access policy which assigns sensitivity to all subjects and all objects within a

system. Sensitivity labels define the required level of trust that a user must have in order

to gain access to a file or object.

147

In contrast, most secure systems today operate in what is known as system

high. In these types of systems, all users are assumed to have the same security

clearances. This clearance is equivalent to the highest level of security of the information

being processed on the system. MAC and sensitivity labels are only required for B2

certified systems and higher. This shows that while the common perception is that

government computer systems are required to be C2 certified, TAFIM requires other

security features which are typically associated with B-level systems.

<L Simultaneous processing in multiple security levels on a
distributed system

This tenet contains essentially the same requirements as above. The

primary difference is that this tenet extends the MLS ideas expressed above to a

distributed system. An additional caveat is that different platforms must be able to process

the data within the same system. This is primarily a function of interoperability, but raises

new security issues. One potential security concern is whether the NOS can determine if

the computer logging on to a network is really the computer it says it is.

e. Use of common communications systems

The idea behind this tenet is that the DOD can use Plain Old Telephone

System (POTS) and other public means, rather than DOD or other government lines.

Government owned lines can be monitored more easily to determine tampering, eaves

dropping, or other security breaches, but this is more difficult on POTS. Communicating

securely over public lines requires some form of encryption, in which both the sender and

the receiver have a key to the encryption method. Not only can encryption provide a

148

measure of security, i, also provides limited authentication verification capabilities as well

as data integrity. There are very few NOSs which provide encyption as a standard

feature. Those that do are generally specifically developed for security purposes. HP-UX

and Windows NT both lack point-to-poim encryption and therefore both fail to meet the

criteria outlined in this tenet.

3. Analysis of the Unii architecture

Originally, Unix had no security features. In fact, when Unix was developed, it

was the general feeling that security wa, an impediment and counter-productive to its

purpose. Unix was designed to allow users and programmers to work in an interactive

manner; security features merely slowed down this interaction. As Unix proliferated into

the academic and scientific communities, the need for security was apparent and features

were added.

« uniform security accreditation and certification

It is important to note that a C2 certification must include the computer as

well as the NOS. With this in mind, HP-UX was certified as a C2 level system on a TAC-

4 HP workstation [HPVI96]. I„ addition to the features used to satisfy the C2

requirements, HP-UX has many additional features.

The first additional security feature is improved auditing. HP-UX can

detect actions «ha, try to introduce or delete objects into a user's space The audit record

will automatically include the name of the object and the TD of the user who performed the

insertion or deletion. This feature helps tine system administrator track down Ulegal or

149

unwanted file deletions as well as attempts to post documents to an account by someone

other than the owner.

Access Control Lists are a portion of the DAC feature of security that HP-

UX has added as a standard feature. Access control lists are lists of each named object

and each user with access to the object. HP-UX's Access Control Lists are also capable

of specifying a list of named individuals and a list of groups of named individuals for which

no access is given.

Additional capabilities for password management are also included in HP-

UX. These include the ability to maintain an encrypted password database which only the

superuser (the system administrator) has access to. Additionally, the NOS can generate

good passwords, screen user generated passwords for those which are easily cracked, and

enforce the concept of password aging to force users to periodically create new

passwords.

Another feature that HP-UX supports for increased security is the ability to

control the log in times and dates that users are allowed to access the system. HP-UX can

also restrict where a user can and cannot log in from. This prevents a user from logging in

and using resources at times when the system administrator determines is not conducive to

the system.

The final feature that the HP-UX Unix variant supports is called boot

authentication. This restricts the ability of anyone without clearance from booting up the

system. The intention of this feature is to prevent anyone other than the system

administrator (or a designated alternate) from booting the system. It also prevents

150

someone from booting from a floppy and copying information without invoking the NOSs

other security features.

b. Consistent security interfaces

A consistent security interface for HP-UX is provided by System

Administration Manager (SAM). This program is discussed in detail in the next section

and will not be discussed here. SAM provides a consistent interface for the system

administrator to interact with security features. Additionally, the SAM interface can be

used by third party programmers in their products to provide further consistency.

c. Simultaneous processing at multiple security levels on a single
platform and distributed system

MLS is not supported by HP-UX. Although HP-UX implements B3 level

DAC, it does not implement Labels or MAC and therefore cannot be used on a MLS

system, either stand alone or in a distributed system. It must be used on a system-high

type of computer network with restricted physical access, which is isolated from networks

of different levels of security.

d. Use of common communications systems

HP-UX fails to provide any method of secure communications when using

public communication systems. As discussed previously, this would entail using some

type of encryption between computers. Information that is being transmitted over

telephone lines, either by e-mail or file transfer, is vulnerable to interception. At present

HP-UX provides no capabilities to make this type of transmission secure. This potential

threat must be addressed by third party products.

151

4. Analysis of the Windows NT architecture

Unlike Unix, Microsoft boasts that Windows NT was built ftom the ground up

with security in mind and developed to meet security requirements of the U.S.

govennnen,. [MICRB, Although this is in sha, contrast ,0 the origins of Unix,

Windows NT provides about the same degree of security protection.

«■ Uniform security accreditation and certification

Windows NT was certified at the C2 level on July 31 1995, but there are

certain conditions to this certification. As previously mentioned, a C2 Cassation must

be performed on a computer system, an OS/NOS alone cannot be certified. Windows NT

was coined on a machine with a disaHed floppy drive. Booting ftom a floppy drive

enables access to hard drives without invoking Windows NTs security features

[CONS02, p. 8]. Microsoft recommends the following actions to allow NT to retain its

C2 rating:

' ^^^^L^^ 'he * SCTVCTS *»»*» «** lock and
eyina glass cage or closet, with access provided only to administrators.

• Disable all floppy drives on the server. [MICR10J

To qualify for a C2 certification, the NTFS (NT File System) must be used

instead of the File Aflocation Table (FAT) format, which allows DOS compatibility.

Windows NT can read and write to FAT partitioned (i.e., MS-DOS fonuatted), bu, these

partitions do no. meet C2 requirements. This is due to the fact that FAT partitions can be

shared or no. shared, bu, do not allow restricting local file access like NTFS partitions do.

[RULE95, p. 69]

152

Some of Windows NT's additional security features which are not covered

by the C2 certification were examined against the B2 Trusted Path and B2 Trusted Facility

Management functional requirements of the TCSEC. In order to satisfy the B2 Trusted

Path functional requirement, a system must support a trusted communication path between

itself and the user for identification and authentication. Although Microsoft states that

Windows NT satisfies these functional requirements at the B2 level, it was not evaluated

against any assurance requirements above its rated C2 level security by TCSEC.

[MICR12]

Windows NT provides audit trails, including one for printers, allowing the

system administrator to make printers more secure. This audit trail is similar to those for

access to the system, in that it provides recording the use of the printer, time of use, and

the account that used the printer. This helps the system administrator track down

improper use of printers [RULE95, p. 207]. These audit trials can also track port usage as

well as which printer printed a certain document. [SCHW95]

Windows NT is also capable of using an Access Control List. This is a

feature not required by C2, but is nevertheless an important security requirement. Access

Control Lists are not required until the B3 level is reached. Although Windows NT uses

ACLs for increased security, it does not incorporate the entire requirements for ACLs at

the B3 level. The B3 requirements for ACLs include the ability to specify a list of

individuals with access and the level of access for every named object in the system

[RUSS92, p. 290]. Windows NT does not provide the granularity to list each user who

has access rights to a specific object; although a global access list can be obtained.

153

b. Consistent security interfaces

The security interface to Windows NT is the familiar Windows interface.

With Windows NT, user accounts are managed centrally. The administrator can specify

group memberships, logon hours, account expiration dates, and other user account

parameters via graphical tools. The administrator can also audit security related events

such as user access to files, directories, printers, and other resources and logon attempts.

The system can even be set to "lock out" a user after a predetermined number of failed

logon attempts. Administrators can also force password expiration and set password

complexity rules so that users are forced to choose good passwords.

A simple password-based logon procedure gives users access to the

appropriate network resources. Windows NT uses a system-level encryption of the user's

password, so that it is never passed unencrypted over the wire. This encryption prevents

discovery of a user's password through wire "sniffing." [MICR13]

c. Simultaneous processing at multiple security levels on a single
platform and distributed system

Similar to HP-UX, Windows NT does not support MLS. Without the

features of labeling and MAG, a computer system cannot be used securely at different

security classification levels. This is true regardless of whether or not the process takes

place locally or in a distributed environment.

d. Use of common communications systems

Similar to HP-UX, Windows NT does not provide any features that

provide security when transmitting information across public communication lines. The

154

only Windows NT feature that is useful for increasing Identification and Authentication

security features in communications over POTS is the Remote Access Service (RAS).

RAS supports a feature called callback. Callback allows the server to call users back at a

predetermined number to verify connection to the network, after the user calls the server

but prior to being logged on by Windows NT. This feature prevents remote access of a

computer from any location other than those approved by the system administrator. This

adds another small measure of security. [RULE95, p. 379]

5. Summary of findings

TAFIM requires that information systems have stringent security features, in fact

the TAFIM requirements exceed recent federal government requirements. Currently,

government systems require that DOD information systems be C2 certified. This federal

requirement helps satisfy TAFIM's objective to have a uniform certification and

accreditation procedure for information systems. The Orange Book provides for this and

the Red Book defines these requirements in a network environment. The problem lies in

the fact that other security requirements described in TAFIM are characteristic of systems

with security classifications greater than C2. This makes the government mandated

requirements for C2 certification of DOD information systems inconsistent with TAFIM's

security objective.

The feature TAFIM specifies which'would improve NOS security are those that

support a MLS. MLS features are those that are characteristic of systems that the Orange

Book categorizes as B-level certified. These requirements are more characteristic of the

security needs of DU COE implementations for tactical support functions. The increased

155

security requirements of TAFM over those covered by The Computer Security Act of

1987 make it more difficult for commercial developers to satisfy TAFIM requirements.

Both NOSs, HP-UX and Windows NT, have been certified to meet the

requirements outlined in the Orange Book for C2 certification. However, an important

distinction is that these systems are NOSs and they need to be evaluated against the Red

Book, which contains an interpretation of the Orange Book requirements for networks.

Windows NT is currently undergoing this evaluation, but the process is both long and

expensive.

Although both systems meet the requirements for C2 certification, it appears that

Windows NT was designed simply to meet the certification process and leaves the rest of

the requirements needed for a secure OS/NOS to third party vendors. This highlights one

difficulty of basing a DOD information system on a commercial NOS. The customer base

for a NOS irt this case is the entire market, not the DOD alone. Consequently, specific

DOD security requirements that may be peculiar, or unnecessary for the rest of the

market, are often left out of the product. The caveats for keeping Windows NT secure,

removing floppy drives and using only NTFS, eliminate two of Windows NT's many

strengths: DOS legacy compatibility and a PC friendly environment.

Both HP-UX and Windows NT offer additional security features, like an ACL, but

HP-UXs features are more robust and offer better value. The Access Control List

provided in Windows NT cannot "map users ... against logon permission times or dates."

[SCHW95]. Both HP-UX and Windows NT extra utilities make a more secure product,

but neither vendor wanted to alienate commercial customers with security that was either

unnecessary for corporate customers or too difficult to maintain.

156

While both provide additional security features that go beyond C2 level

requirements, neither NOS comes close to supporting the types of features required for

MLS on either a single platform or in a distributed environment. Windows NT was

"designed with security in mind," and in fact the National Security Administration (NSA)

is paying to have a feasibility study on ways to improve its security. [MCCA96, p. 6]

Variants of Unix have been tested at the B2 and even B3 level, but not HP-UX.

The addition of the callback feature to allow pre-approved numbers to be called

back remotely, is a nice to have feature, but again, falls far short of the desired capabilities

required by the TAFIM tenet. Neither NOS meets the need for communication over

POTS without help from third party software. The government currently restricts sales of

encryption software outside the U.S., so developers are reluctant to incorporate these

features into products which they hope to sell world-wide, like a NOS. Also, the

additional time, money, and effort to test and certify these products at the B-level of

security is a big deterrent to developers, particularly when they feel that the commercial

sector does not want or need some of those feature, when the U.S. Government only

requires C2.

Ideally, the NOS selected for information systems based on the Du COE would

provide the security features described in TAFIM without the need for an additional third

party solution. Why would the DOD want to buy a NOS that needs additional software to

make it TAFIM compliant? Consequently, the DOD needs to acquire a NOS with the

security features that meet its needs. While both Windows NT and HP-UX fail to meet

several of the security requirements described in TAFIM, the HP-UX security approach

does a better job of meeting government requirements for C2 certification. This will

157

dramatically shift in favor of Windows NT if it obtains a B-level certification which does

not require modifications to the extent that it would no longer be compatible with its base

of existing software.

H. IMPROVE MANAGEABILITY

1. TAFEM's definition of the objective

TAFIM's states that improving manageability can be realized by applying the

following principles:

• Consistent Management Interface. Consistency of management
practices and procedures will facilitate management across all
applications and their underlying support structures. Users will
accomplish work more efficiently by having the management burden
simplified through such an interface.

• Management Standardization. By standardizing management
practices, control of individual and consolidated processes will be
improved in all interoperable scenarios.

• Reduced Operations, Administration, and Maintenance (OA&M)
Costs. OA&M costs will be reduced through the availability of
improved management products and increased standardization of
objects being managed. [DISA03, Vol. 2 p. 2-5]

2. Interpretation of objective

The task of keeping an information system operating smoothly with a minimum of

downtime is a tremendous challenge. In a complex system, like an implementation of the

DU COE, careful consideration has to be given to how the network is going to be

managed so that it can provide full connectivity, correct functionality, and full flexibility to

the end user. The DOD is becoming increasingly reliant on information systems to

158

perform day to day tasks. This dependency means that there will be serious consequences

for interruptions in communications in DOD systems.

An interruption or failure in the military pay system causing a delay in paydays

would be a blow to morale, affecting service readiness. A failure in an intelligence system

could have devastating effects. Methods to predict or rapidly detect failures and alert

personnel to take remedial action can thus produce significant benefits. [HELD92, p. 2]

Thus, network operating systems and their network management tools must

provide a means to monitor network equipment and facilities and provide technicians with

the ability to implement configuration changes from a central site location, as well as

generate alarms when predefined conditions occur. It is these capabilities that TAFUvfs

management objective hopes to improve.

a. Consistent management functions and interfaces

Defining a common set of management functions is essential in GCCS, or

any other DH COE application. The ever changing environment in which the DII must

operate, as well as constantly rotating personnel, necessitate the need for common

management and functions to ensure personnel are properly and cost-effectively trained.

These management functions should be common to all NOSs. The International Standards

Organization (ISO) with the development of the Open System Interconnection (OSI)

standards defined five network functional areas that are generally accepted by the industry

and believed to be the minimum functions a network management system should include.

Theses five functional areas are:

• Configuration and change management

159

• Fault and problem management

• Performance and growth management

• Security and access management

• Accounting and cost management

While not inclusive, these areas do provide a basic set of management functions.

Administrators should be able to perform these basic management functions within an

intuitive GUI, one that is consistent with the NOS.

(1) Configuration and change management

Configuration and change management involves keeping track of

the many and various components of the network. It is probably the most important part

of network management. Unless a network administrator can keep track of all the

components of the network, he can not accurately manage the network. Configuration

management software should be able to provide the network administrator with many

capabilities. In a large network, control should be administrator from a single point.

Administrators should be able to view graphical configurations of the network layout.

(2) Fault and problem management

Fault and problem management includes the detection, isolation,

tracking, and resolution of problems which occur on the network. The most important

part of this function is fault identification. This can be accomplished in a variety of ways,

from setting thresholds on the network to users reporting problems encountered to the

network administrator. Once problems are encountered, procedures must be established

to record the problem, identify the cause, and correct it.

160

(3) Performance and growth management

Performance and growth management ensures that sufficient

network capacity exists to support the requirements of the end user. This function

evaluates the performance and use of network equipment as well as adjusting the network

configuration. Typically, the evaluation could require visual observation of equipment

indicators or the gathering of statistical information into a database that would be used to

project trends of network use. Performance measurements provide the ability for network

managers to measure network parameters such as response time, quality of service,

congestion, and availability. [MULL90, p. 268]

(4) Security and access management

Security and access management includes functions which ensure

that only authorized personnel access the network. Many of the functions associated with

security management were discussed in the previous objective and include functions such

as authentication of users, encryption of data, the management and distribution of

encryption keys, examination of security logs, virus prevention measures, and the

performance of audits and traces to ensure only authorized users access the network

resources and facilities. [HELD92, p. 7]

(5) Accounting and cost management

Accounting and cost management functions include developing

methods for establishing charges for the use of the network by various departments.

Some of these functions are budgeting for resources, examining the effects of tariff

161

charges on the structure of the network, and verifying the correctness of vendor and

telecommunication carrier bills. [HELD92, p. 8]

Another important feature for a NOS is the ease with which

management capabilities are performed by the network manager. The user interface to

management information, whether real time alarms and alerts or trend analysis graphs and

reports, is an essential piece to successfully implementing management functions. If the

data gathered cannot be transformed into useful information in an easily understood

format, then the real purpose of a network management system is lost. Collecting data is

meaningless if the data is not used to make informed decisions about the optimization of

systems and functions. One way of achieving this objective is to have consistent, intuitive

interfaces for these functions. [STEV95]

b. Management standards

One theme throughout the objectives of TAFIM is interoperability. This

feature should be extended to all aspects of the network, including management

capabilities. The increasing complexity and growth of networks has necessitated the

development of network management tools. Complexity and growth are also likely to

plague the DOD as systems are required to comply with to DU COE. Maintaining legacy

systems, new acquisitions, different systems, and multiple vendor systems, complicates the

methods for managing networks. In this diverse environment, managers are forced to rely

on a variety of tools to keep networks optimized for efficiency and cost savings.

The need arises for standards that allow "the equipment of different

vendors to interoperate on the same network, permitting the exchange of network

162

management information such as alarms, performance measurements, usage statistics, and

diagnostic tests resulting in a standard format" [MULL90, p. 279]. Standards are needed

to enable objects on a network to talk a common language, allowing them to exchange

information about packets, protocols and network data. Standards in network

management should provide several benefits including:

• A single network for user applications and network management that results from
a common communications platform.

• Management in a multi-vendor operating environment that is facilitated by open
naming conventions and standard data fields.

• Reduced costs for network management through common, reliable specifications
that are incorporated into the designs of hardware and software.

• Standardized applications across network elements by common management
protocol definitions. [MULL90, p. 279]

The DOD would benefit from these goals as it tries to migrate its systems

to the Du COE. During this migration, the DOD will have to manage legacy systems

along with new DII COE based systems. Standard management protocols would enable

the DOD to more effectively achieve its objectives. As with any other standard, the

difficulty is identifying which one to adopt.

The first network management standard to be developed was the Simple

Network Management Protocol (SNMP). This protocol was considered a quick, short

term solution while other more capable management protocols were being developed.

Two management protocols that eventually emerged in the late eighties were SNMPv2 (an

improved version of SNMP) and Communications Management Information Protocol

(CMIP). These two were expected to succeed SNMP.

163

SNMP was designed to operate over TCP/IP. It was designed in the mid-

1980s as an answer to managing different types of networks. As mentioned, it was first

conceived of as a temporary solution until a better network management protocol became

available. However, SNMP soon became widespread and the network management

protocol of choice. It has become the "de facto" standard. [UWAT96]

SNMP was designed to perform the basics of network management

without putting stress on network resources. SNMP operates on a network by

exchanging messages that contain network information. These messages are known as

protocol data units (PDU). PDUs are used by SNMP to monitor the network. They

perform functions such as reading terminal data, setting terminal data, and monitoring

network events like terminal start-ups.

One advantage of SNMP is that it is a simple protocol. It has smaller

memory and CPU requirements than other management protocols. SNMP has been used

as a management protocol on the Internet since its development, and is supported by many

vendors. SNMP is in wide use, is easy to implement, and does not put stress on a

network. - The shortcomings of SNMP can also be traced to its simplicity. SNMP was

designed without many security features. The other complaint about SNMP is that it is so

simple that it does not provide information that is detailed enough, or organized enough,

to keep up with the increasing size and diversity of networks. The latest version of

SNMP, SNMPv2, was designed to address these shortcomings. SNMPv2 provides more

security features, as well as providing more detail for managers. Surprisingly, the original

version of SNMP remains the more popular version today. Its widespread use and

simplicity have kept SNMPv2 from being widely adopted. [UWAT96]

164

CMP was the protocol designed to replace SNMP in the late 1980s. It

was built to make up for deficiencies of SNMP. Its design is similar to SNMP, but it is a

much bigger, more detailed network manager. It uses PDUs to monitor the network, but

with a larger number of them. In CMDP, PDUs are much more complex and provide

significant advantages. One is that in CMDP variables cannot only be used to relay

information to and from a terminal line, as in SNMP. In addition, they can be used to

perform tasks. In CMIP, for example, a PDU can notify the management server that a

terminal can not reach its file server. In SNMP, the administrator can only determine this

by keeping track of how many times a terminal has failed to respond. This makes CMIP

more efficient, requiring less manpower to administer. CMDP was also built with security

features in mind. It supports authorization, access control, and security logs. The result is

more secure protocol. [UWAT96]

CMEP has two major disadvantages. First, it is a very large management

system. It requires a large amount of system resources to administer. The requirements

are ten times those of SNMP. This makes CMIP difficult to administer except on large

networks. [UWAT96] Second, it is an OSI network management protocol, as opposed to

a TCP/IP protocol. Since the market place has overwhelmingly opted for TCP/DP over

OSI, CMD? is no longer a viable option.

The potentially large and complex information systems that could result

from implementations of the Du COE, realizing that there will be legacy systems to

maintain, underscores the need for a standard management protocol. It is important for

the DOD to incorporate NOSs that support standard management protocols like SNMP

and CMDP. These protocols will standardize the structure for formatting messages and

165

transmitting information between objects on a network. This will be essential as the DOD

continues to develop information systems, especially if it desires to be able to manage the

new systems as well as its legacy systems.

Another concern about management standards is the use of standard

practices when dealing with security issues, control of accesses, and down time of the

systems for network administration. This is less of a NOS issue than an issue of policies

and practices.

c Reduced costs

Ideally, the purpose of NOS management features is to bring consistency in

the configuration and management of heterogeneous systems. The ability to troubleshoot

problems on a network from a central location, configure and manage devices from a

central location, and provide a structure for easy expansion and organization should

reduce costs. [PABR96, p. 169] Increased standardization of management features would

benefit DOD personnel, especially when considering frequent movement of personnel.

Traditionally, the costs of managing a network have been significant. It is

estimated that firms spend on the average about 15 percent of their total information

systems budget on network management. This percentage translates into an average

annual expense of $1.3 million for the largest 100 American firms. [SNMP96] The ability

for management features to reduce costs should be an objective when selecting NOSs,

especially with today's shrinking budgets. Improved management features should

promote this. This tenet will primarily be achieved by adhering to the ideas in the first two

standards.

166

3. Analysis of the Unix architecture

Hewelett-Packard's vision of network administration as quoted from their

home page is:

HP-UX provides a core set of standard Unix network management
tools. In the simplest terms, systems management is a set of procedures and
tasks that are used to maintain a reliable, secure, and robust computing
environment. The key to enterprise-wide IT control is a common
framework. This platform, however, must support the diverse applications
used by a variety of operators and administrators working in numerous
physical locations. While these individuals may have specific
responsibilities, they cannot work in isolation. Effective system
management must link these individuals and coordinate management
activities. [HPVI96]

a. Consistent management functions and interfaces

HP-UX Systems Administration Manager (SAM) provides an interface to

basic Unix administrative functions. SAM enables a network administrator to perform

management tasks through a GUI. This enables the administrator to run common Unix

management utilities without having to remember particular commands. This simplifies

tasks for the network administrator. Tasks are now accomplished through a standard

management interface. SAM accomplishes this by providing a sequence of guidance steps

to perform such tasks as configuring or adding a disk or adding a printer.

By simplifying complex tasks, via this set of structured questions, SAM is

able to reduce errors and increase productivity. For example, to add a new disk to the

system, the administrator simply selects this task from the SAM interface and is prompted

for the directory on which to mount the disk. All other auto-sensing and configuration

tasks are handled transparently. TCP/IP and links can also be configured through SAM.

167

Another benefit that SAM provides is the ability to be customized. SAM is

capable of allowing third party tools and utilities to be launched through SAM's graphical

interface, keeping the interface to the administrator consistent. This enables all

management utilities to be maintained and administered through the same interface.

[HPVI96]

SAM is also highly scaleable. SAM accomplishes scalability by creating a

single superuser. This superuser can assign other administrators privileges to accomplish a

portion of the task that a superuser is responsible for. This delegation of tasks allows the

superuser to be in charge of the system, while at the same time allowing many tasks to be

spread out to reduce the burden on the superuser. [HPVI96]

HP-UX also includes a standards based utility for managing software. This

utility, called Software Distributor/UX, is based on the draft copy of POSIX 1387.2.

Software Distributor/UX offers the administrator the means to distribute, manage, and

install from one location. Software Distributor/UX is also run from the same SAM

interface. [HPVI96]

All of the HP-UX management tasks described are based on an object/task

design. This simplifies network management for the administrator. All hardware and

software components are treated as objects; these objects perform tasks. This level of

abstraction simplifies the job of the system administrator by using consistent methodology

to manage different elements in the network environment. Additionally, all the tools

mentioned have the identical graphical interface. This allows the administrator to learn

only one interface to perform all management tasks.

168

b. Management standards

Unix NOSs have provided support for TCP/IP since the University of

California, Berkeley added it to their variant in 1981. This support lends itself well to the

Internet, but it also provides easy scalability. The network administrator can assign each

sub-net, usually a LAN, a set of addresses. TCP/IP, a router-based protocol, can use

routers and bridges between sub-networks to prevent congestion and keep resources

available to users by isolating traffic.

Not only does HP-UX support the TCP/IP protocol stack, it also supports

the TCP/IP based management protocol SNMP. SNMP provides HP-UX flexible

management capabilities. This allows a Unix computer to manage objects remotely using

SNMP based management software. As discussed, SNMP is the most prevalent network

management protocol.

4. Analysis the Windows NT architecture

Microsoft stresses that system administration tools within Windows NT differ from

traditional network administration tools because of two factors. The first is that Windows

NT is based on a client/server model rather than a traditional host based network model.

This makes it possible to use decentralized administration. However, most organizations

would chose centralized administration networks because of the greater control it

provides. The second reason is that all administration in Windows NT is performed from

the traditional Windows GUI. This allows administrators to conveniently use tools that

accomplish administrative functions.

169

a. Consistent management functions and interfaces

Administrative tools that are included within Windows NT include:

• Performance Monitor

• Event Viewer

• Server Manager

• User Manager for Domain

• Disk Administrator

(1) Performance monitor

Performance Monitor is the Windows NT tool for tracking

performance. The Performance Monitor tracks network parameters such as: the number

of processes waiting for disk time, the number of network packets transmitted per second,

and the percentage of processor utilization. All information is displayed graphically, but

can also be given in text format. Data can be displayed either in real time or collected in

logs for later use. Windows NT Performance Monitor can also be used to generate alert

logs. Alert log entries can be made at times when specified limits are exceeded on the

network. [MICR03, p. 34]

(2) Event viewer

Windows NT Event Viewer can track a range of events that occur

on a network, from system wide events to events initiated by a single user. System wide

audit policies are established by administrators through User Manager for Domains.

Windows NT uses three types of logs to record events that occur on the network. These

logs can be viewed by the network administrator through the event viewer. The System

170

Log tracks events triggered by Windows NT components. Examples include components

that fail to load during startup and power fluctuations. The Security Log tracks events

triggered by security violations. This would include illegal logons and unauthorized file

access. The Application Log tracks events triggered by application programs. The Event

Viewer enables administrators to examine and manipulate log entries.

(3) Server manager

The Server Manager in Windows NT is an administrative tool used

to perform a number of tasks. Users can be inspected from within Server Manager.

Messages concerning network status can be transmitted using Server Manager. With

Server Manager, administrators are capable of inspecting logged-in user accounts, shared

resources, connections, replication, and administration alerts. The network administrator

can also determine which resources are currently being used, or even who is connected to

a resource and duration of use.

(4) User manager

The User Manager for Domains function in Windows NT is used to

create and modify user profiles. Figure 17 shows how the network administrator can

control access to servers and workstations within a domain. [MICR03, p. 32] User

Manager also allows the administrator to restrict hours of use, valid dates that a user can

access the network, and which resources the user can access.

171

New User

JJsemame:

Full Name:

Description:

ßassword:

Confirm
Password:

El User Must Change Password at Next Logon

Q User Cannot Change Password

Q Password Never Expires

E3 Account Disabled

■I
SJSÜpBJä Pi pMJpRJrläiK . IflOIWW Bi| JKJJL

Figure 17. User Manager for Domains - New User Dialog Box

(5) Disk administrator

Disk Administrator is a utility which allows the administrator to

perform virtually any task involving disk drives. These tasks include: creating partitions,

creating volumes and stripe sets, reading status information (e.g., partition size, block size,

etc.), and assigning drive letters to partitions.

Disk Administrator also includes several additional features. One

of these capabilities is to statically assign drive letters. This is so the order of existing

drive letter assignments will not be disturbed. Another feature is the ability to search for

information such as assigned drive letter or stripe set, which is very useful when installing

a new copy of Windows NT. [RULE95, p. 127]

Due to the fact that all the management tools mentioned above are

built into Windows NT, all of the functions are convenient to use. This makes the job of

the administrators easier because they do not have to learn third party tools.

172

b. Management standards

By standardizing on Windows NT, a familiar interface between the

administrator and the NOS is achieved. Windows NT allows the use of several different

platforms and protocols on the same network using the same set of resources such as

servers, printers, modems, and scanners. By supporting these different platforms and

protocols, management needs only one set of management tools for the entire network,

instead of a different set of tools for each type of protocol or platform on the network.

Because Windows NT includes TCP/IP, a protocol available in many

NOSs, Windows NT has the capability of communicating with different NOSs. Windows

NT also supports SNMP. This allows a Windows NT computer to be managed remotely

by SNMP-based management software. [RULE95, p. 531]

5. Summary of findings

Both HP-UX and Windows NT provide basic administrative functions to help

network administrators. Both Microsoft and Hewlett-Packard admit that a much more

robust management software package is needed for managing large distributed networks.

Both in fact have developed add-on management packages that can be purchased by the

customer.

Hewlett-Packard has developed a strategy to incorporate systems and network

management applications under a common framework. This framework, HP Open View,

provides a strategy for managing multi-vendor networks, systems, applications, and

databases across both legacy and client/server systems.

173

Microsoft has similarly developed an additional management package called

Systems Management Server. This product is an add-on product contained in the product

BackOffice for Windows NT. However, it does not contain all the tools necessary for

network management, which are contained in other products based on SNMP (e.g.,

Hewlett-Packard's Open View) [RULE95, p. 394]. Microsoft acknowledges Windows

NT's lack of complete administrative support for large networks by stating:

For more sophisticated tools, the kind of tools you need for data center
operations, there are third-party products available for Windows NT.
(Some of them have even been ported from Unix). [MICR03, p. 37]

The difficulty then is trying to determine which NOS comes closer to meeting the

objectives of TAFIM, realizing that neither provides enough network management

capabilities without add-on software. The authors do feel that Windows NT fails to

provide adequate TCP/IP support. The most dramatic failures are that Windows NT does

not support dynamic routing, or Telnet server. John D. Ruley, editor at large of Windows

Magazine states, "For complex networks with multiple paths to the same remote

destination, you must use a non-Windows NT system that supports dynamic routing."

[RULE95, p. 328]. Windows NT static routing model, which requires manual

configuration, suffers performance degradation after about five segments. Manual

administration becomes overwhelming at this point. [RULE95, p. 329] The demands of

the DII COE require the capability of having multiple paths to critical locations. Almost

all Unix variants, including HP-UX, support RIP or other dynamic routing protocols

contained in the TCP/IP protocol suite. [RULE95, p. 331] Because Unix supports

dynamic routing, it can more easily manage a complex network. The Telnet server

174

deficiency means that an organization must install a Unix Telnet server in order to provide

this service.

Unix relies more on management standards, like SNMP and TCP/IP. This reduces

the costs of using third party products. For these reasons, the authors feel that although

not perfect, Unix meets this TAFIM objective more completely than Windows NT.

175

176

IV. CONCLUSION

A. DETERMINING THE RIGHT NOS

1. Which NOS is better for the DH COE?

A summary of the analysis contained in Chapter III is included in a matrix in

Appendix E. The matrix shows how each NOS measures up to each TAFIM objective

and the objective's corresponding tenets. The summary clearly shows that each NOS has

its advantages and disadvantages. The authors feel that neither NOS adequately meets all

the DII COE needs and all the guidelines of the TAFIM TRM objectives. Appendix D

provides additional information about the Unix and Windows NT NOSs for information

managers.

Unix and Windows NT are comparable in many key areas: 32 bit support,

multitasking, multithreading, security, integrated networking, and support for symmetric

multiprocessing. The advantages of Unix include its maturity, open systems standards

support, distributed networking, support for parallel processing, and scalability. Windows

NT's advantages include a more familiar user interface, OLE support, reduced training

costs, portability, and support for a large number of Windows applications. This thesis

concludes that the DOD should capitalize on the strengths of both NOSs by matching each

NOS to those tasks where it can provide better support. Unix and Windows NT would

best serve the DOD by being used only for those tasks where each NOS's strengths will

benefit the end users.

177

DOD information systems that successfully employ Unix servers, with its high end

scalability on large information servers, and Windows NT on the desktop, with its lower

cost and user friendly interface, maximize the capabilities of the information systems and

their NOSs. The employment of both Unix and Windows NT requires the two NOSs to

interoperate to a high degree. The authors feel that the technology and functionality of

both NOSs are adequate to support this level of interoperability.

By limiting an information system to one of the two NOSs, the usability and

performance of the information system would be less than the minimal needs as outlined in

TAFIM. Both NOSs combined together to utilize strengths and minimize weaknesses,

still do not provide all the features required to fulfill all the needs of DOD information

systems, let alone TAFIM.

Nevertheless, real world needs demand that information technology managers

select a NOS for their information system. This selection must be made to meet the

TAFIM objectives as best as possible. Today's market place does not permit the use of a

non-proprietary NOS, because one simply does not exist. In order to be functional, DOD

units must own and maintain a computer information system, and therefore a NOS must

be used. One of the goals of the Du COE is to reduce the number of different NOSs used

by the DOD. A combination of Unix and Windows NT is certainly not ideal, nor does it

meet all of TAFIM's objectives, but no single NOS is enough.

2. Where are we?

The intent of TAFIM is to provide DOD information managers guidelines for

developing standard information architectures. This document is not intended to provide

an architecture for a specific DOD mission. Consequently, it defines a set of ambitious

178

objectives. Several of these objectives contained in the TAFIM TRM are vague, abstract,

and redundant. Some are, for the most part, unattainable with current technology in the

market place. Some objectives (e.g., promote vendor independence and improve

development efficiency) are lofty and not necessarily beneficial to the DOD. Specifically

pertaining to NOSs, TAFIM's large size and general approach leave information managers

lacking enough specific guidance to help select an appropriate NOS. TAFIM was

originally designed around the Unix operating environment because, at the time of

TAFIM's writing, Unix was the only real NOS that the DOD could employ to handle its

information systems. Consequently, many of the objectives and standards that the TAFIM

TRM adopts bear a legacy to Unix. DOD system developers need to approach TAFIM as

only a guideline to designing standard architectures, not one that suggests a specific

architecture, like Unix.

The DU COE takes TAFIM one step further toward providing the DOD with a

specific system architecture. While the DII COE does provide more specific guidance to

system designers, this document is also written in general terms. This leaves information

managers alone to decide specific system questions like what NOS to use.

B. REMAINING INFLUENCING ISSUES

1. Where should we be going?

While not perfect, it is important to realize the benefits and drawbacks of having

the DOD adopt the TAFIM framework. Although TAFIM may describe a set of ideals

that are difficult to obtain, it does present DOD system developers with a common set of

objectives to strive for. Interoperability, portability, scalability, and reducing life cycle

179

costs will continue to be important issues when designing systems. Both TAFIM and the

DII COE emphasize DOD adoption of open systems standards in order to eliminate

reliance on proprietary vendors, and increase interoperability and portability. TAFIM and

the DII COE should become continuously updated living documents in order to increase

manageability and decrease redundancy. There should be one framework that outlines

general objectives and another one that addresses specific factors and variables to direct

information system managers. The guidance should not be the adoption of open systems

standards, but a monitoring of the market place for specific direction.

2. Why did we choose TAFIM objectives?

Since the environment for this thesis was the DII COE, and the DII COE states it

is fully TAFIM compliant, the TAFIM TRM was chosen as the framework to use for

discussion and comparison. The assumption was made that this framework provided

sufficient guidance in analyzing NOSs. The question is whether TAFIM alone is a

sufficient framework for analyzing how well a NOS meets the needs of DOD information

systems. The authors conclude that an information system framework can provide

guidance to decision makers in developing or choosing a NOS. The problem with TAFIM

is that it is too general in nature and does not provide any specific guidance to information

managers.

TAFIM fails to mention or address certain fundamental objectives crucial to NOS

selection such as network performance, fault tolerance of critical systems, and reliability.

If TAFIM is going to be the document that the DOD uses to design system architectures,

it needs to become a living document that is updated and modified to fit current needs and

objectives of all system aspects, including NOSs. It is the opinion of the authors that

180

TAFIM is not specific enough, and can not therefore provide sufficient guidance to

information system mangers in its present state.

3. What have we accomplished?

This thesis provides guidance to decision makers in picking a NOS that is best for

their specific information system. Commanding officers and system administrators

throughout the DOD still face the difficult decision of deciding which NOS is best for their

information system. It is not feasible to provide case by case guidance for each

information system in the DOD. This thesis provides guidance and a framework for those

decision makers to use when evaluating their specific systems, and deciding how they

should choose the NOS for it.

Windows NT is better for desktop computing and mid-level (departmental) servers

while Unix is better for high end servers. The term better here does not indicate that all

functionality and services required are provided, it simply means better relative to the

other NOS. DOD decision makers must realize that either NOS without add-on third

party products will not necessarily fulfill all their needs, and will not satisfy all the

objectives outlined in TAFIM. To date, such a NOS does not exist on the market. The

perplexing issue that still remains is whether both Unix and Windows NT will continue to

evolve and eventually meet more of the objectives outlined in TAFIM.

4. How can you achieve added benefits for your information system?

This thesis analyzed the capabilities provided by the Windows NT and Unix NOS.

Both NOSs failed to fulfill several of the tenets contained within each TAFIM objective.

Many of these tenets, however, are attainable by adding third party solutions to each NOS.

181

The authors deliberately tried not to discuss add-on third party products or options.

Doing so would have dramatically increased the scope of the thesis as well as reduced

apparent differences between the two NOSs. Ideally, when purchasing a NOS, the DOD

would obtain a product that fulfilled required functionality of DOD information systems.

However, the commercial market does not need the same things that the DOD requires in

a NOS, and therefore the market place is not likely to fulfill DOD needs anytime soon.

The best option today for DOD information systems is to adopt one or both of

these NOSs and tailor them to fulfill specific organizational needs with third party

products or by custom development. Minimal research can yield many market solutions to

most of the needs not covered either by the Windows NT or Unix NOS.

5. What is the conclusion on standards?

Open systems standards are prominent throughout all the objectives of TAFIM.

How does the DOD adopt a proprietary NOS that fulfills its needs and still maintain

vendor independence? The push by the federal government to outsource is easing the

tension in this area, but it is still a concern to decision makers. However, by choosing

between either the two approved Unix variants or Windows NT, the DOD is essentially in

that position. Although it is arguable that Unix is less vendor dependent that Windows

NT, dependencies still exist and will continue to be an issue that needs to be addressed.

The development of interoperable heterogeneous information systems, through

standardization, continues to be a focal point in the commercial market place. The authors

would like to conclude that the DOD, although a major force, should not be in the

business of developing these standards. DOD should let the market choose the path of

standards and follow these current trends in the market place.

182

C. AREAS FOR FURTHER RESEARCH

Areas of research that can help DOD information system decision makers are to

address some of the most effective third party add-on products and services. For example,

this can be accomplished by taking an objective view of products such as Microsoft

BackOffice (and its numerous applications) for system administration or HP Open View

for providing better security and administration on Unix platforms.

Another area of research that can be explored is the update and modifications

required to TAFIM in order to make it an up-to-date framework for information

management. Determining which objectives no longer apply today and which objectives

have been changed with the advancement of new technology are just the beginning for

further research into TAFIM.

While it is important to study reducing life cycle costs, the DOD would benefit

from a thorough cost/benefit analysis when deciding potential NOSs. This is worthwhile

only after the determination of a viable solution. All things equal, in today's fiscally

sensitive military, there is a need to select the most cost efficient solution. If there is only

one solution, then matters are simplified a great deal.

183

184

APPENDIX A. GCCS COE AS-BUILT STANDARDS

The GCCS COE is being implemented primarily through the integration of existing

components provided by the Services and Agencies. Limited new development is taking

place to add additional functions, port to the required platforms, allow multiple languages

to call COE components, and aid in integration. Thus, the standards profile primarily

represents an as-built documentation of what exists. The as-built standards meet three

tests: there is a direct or derived mission area application need, the standard is mature,

and products are available, if necessary, to implement the standard. Other standards have

been included in the GCCS standards profile to support future development.

This profile does not include the specification of the project APIs that have been

adopted by GCCS. Project APIs document the interface to developed software that has

been included in the GCCS COE. These APIs will be documented under separate cover.

Table 3 describes each standard and it's application in the GCCS COE.

185

Service Area

Operating System

Software Engineering
Services

User Interface

Data Management

Data Interchange

Graphics

Network

Service

Kernel
Shell & Utilities
Real-time Extension

Programming Languages

Case Tools & Environment

Client/Server

Object Definition and
Management

Window Management

Data Dictionary - Directory
Data Management

Document Interchange
Vector Graphics Data
DMA Vector Map Data
Raster Graphics Data
DMA Raster Data
Symbology

Imagery
DBMS data

Standard

POSIX compliant
Unix

HPS PUB 119 (Ada)
FIPSPUB 119-1 (Ada-9X)
FIPSPUB 160(C)

Developer & Service
Specific

FIPSPUB 158 (X-Window)
MOTIF
DOD Human Computer
Interface Style Guide
MOTIF
FIPSPUB 158 (X-Window)
MOTIF

FIPSPUB 156(IRDS)
FIPSPUB 127-1 (SQL)
FIPSPUB 127-2 (SQL+)

Graphics

Map Products

Data Communications

WP 5.1, ASCII
FIPSPUB 128 (CGM)
VPF/SDTS/DTED/DCW
FIPSPUB 150 (Type I)
ADRG/ADRI
NATOSTANAG2019
SMGS
NITF
IDBTF, IDBEF

FIPSPUB 120-1 (GKS)
FIPSPUB 153(PHIGS)
DNC, DTED, ARC, VMAP,
World Databank II,
CARDG, World Vector
Shoreline

FTAM/X.400/X.500/X.25
IEEE 802.2 802.3, 802.4,

186

Service Area Service Standard

PC/Micro Support

802.5
FTP/TELNET/SMTP/TCP/I
P, MIL-STD-187-700
FIPS 160-170 (Modem
Support)

Security Evaluation Criteria

Operating System
Data Management
Network Services

DOD 5200.28-STD
CSC-STD-003-85
IEEE PI003.6
NCSC-TG-021 (TDI)
NCSC-TG-005 (TNI)

Distributed Computing

GCCS COE As-Built
Standards Profile

Distributed Data
Transparent File Access
Distributed Computing

None
NFS
RPC, Berkley Sockets

Table 3. GCCS COE As-Built Standards Profile

187

188

APPENDIX B. COMMON CONSENSUS STANDARDS

Service Area Service Standard
Operating System Kernel FlPSPub 151-1 (POSIX.1)*

Shell and Utilities IEEEP1003.2*
Realtime Extension IEEEP1003.4*

Software
Engineering Services

Programming Languages FIPSPUB 119 (ADA)*

Case Tools and Environment ECMA Portable Common Tool
Environment (PCTE)
Specification 149

User Interface Client Server
Operations

FIPSPUB 158 (X-Window
System)*

Object Definition and
Management

DoD Human Computer Interface
Style Guide*

Window Management FIPS PUB 158 (X-Window
System)*

Dialogue Support Future Standard IEEE P1201.X*
Data Management Data Dictionary - Directory FIPSPUB 156(IRDS)*

Data Management FIPSPUB 127-1 (SQL)*
Data Interchange Document Interchange Planned FIPS PUB (Office

Document Architecture/Office
Document Interchange
Format/Office Document Language
ODA/ODIF/ODL)*

Document Interchange FIPSPUB 152 (SGML)*
Vector Graphics Data FIPS PUB 128 (CGM)*
Raster Graphics Data FIPSPUB 150 (Type I)*

Planned FIPS PUB (Type II)*
Product Data Interchange Planned FIPS PUB (Initial Graphic

Exchange Specification/IGES)*
Product Data Interchange Draft International Standard

(Standard for the Exchange of
product Model Data-STEP)

Electronic Data Interchange FIPS PUB 161 (EDI)*
Graphics Graphics FIPSPUB 120-1 (GKS)*

Graphics FIPSPUB 153(PHIGS)*

189

Network Data Communications FIPS PUB 146-1 (GOSIP)*
Telecommunications MIL-STD-187-700*

Security Evaluation Criteria DOD 5200.28-STD*
Compartmented Mode
Workstation

DRS-2600-5202-87*

Compartmented Mode
Workstation Evaluation
Criteria

DRS-2600-6243-91, Version 1*

Compartmented Mode
Workstation Labeling:
Encoding Format

DDS-2600-6216-91*

Compartmented Mode
Workstation Labeling:
Source Code and User
Interface Guidelines

DDS-2600-6215-91*

Digital Signature Draft FIPS PUB (DSS)*
Operating System IEEE P1003.6 (Draft Standard)*
Data Management NCSC-TG-021 (TNI)*
Network Services ISO 7498-2*
Network Services NCSC-TG-005 (TNI)*
Network Services Draft IEEE Standard 802-10*
Network Services DNSIX; Version 2.1
Network Services Draft ISO Standard for Transport

Layer Security Protocol (TLSP)*
Network Services ISO Committee Draft for Network

Layer Security Protocol (NSLP)*

Distributed
Computing

Distributed Data ISO 9579 -1,2 Remote Database
Access (RDA)*

Transparent File Access Draft IEEE Standard PI003.8
Distributed Computing Draft OSF Specification.

(NCS/RPC)
System Management System Management Government Network Management

Profile (GNMP) FIPS 179*
Internationalization

Table 4. Summary of Consensus Standards from [DISA03, Vol 2 p. 3-5]

Table Explanation:

Entries with an "*" indicate standards within the DoD Profile of Standards.
Entries in shaded areas are under consideration and are for planning purposes only.

190

APPENDIX C. ORANGE BOOK CLASSIFICATIONS

Feature D Cl C2 Bl B2 B3 Al

SECURITY POLICY

Discretionary Access Control - X X s s X s
Object Reuse - - X s s s s
Labels - - - X X s s
Label Integrity - - - X s s s
Exporting Information - - - X s s s
Labeling of Output - - - X s s s
Mandatory Access Control - - - X X s s
Subject Sensitivity Labels - - - - X s s
Device Labels - - - - X s s
ACCOUNTABILITY f -

Identification and Authentication " X X X s s s
Audit - - X X X X s
Trusted Path " - - - X X s
ASSURANCE

System Architecture - X X X X X s
System Integrity " X s s s s s
Security Testing " X X X X X X

Design Specification & Verification " - - X X X X

Covert Channel Analysis " - - - X X X

Trusted Facility Management " - - - X X X

Configuration Management - - - - X s X

Trusted Recovery " - - - - X s
Trusted Distribution " - - - - - X

DOCUMENTATION :-/

User's Guide to Security - X S s s s s
Facility Security Manual - X X X X X s
Test Documentation " X S s X s X

Design Documentation " X s X X X X

X = New requirements for this class
S = Requirements are the same as the previous level

191

192

APPENDIX D. UNIX AND WINDOWS NT AT A GLANCE

NOS Feature Unix (HP-UX) Windows NT

System

System architecture 32 Bit 32 Bit

Multi-platform support (portability) Yes Yes

File system NFS NTFS

Multitasking support Yes Yes

Distributed computing support Yes Yes

Symmetric multiprocessing capable Yes Yes

Max. processors per machine 14 32

Parallel processing capable Yes No

Support for POSIX 1003.1 Yes Yes

Max addressable RAM 3.75 Gigabits 4 Gigabits

Max. file size 128 Gigabits Several Exabits
(264 bytes)

File recovery support Yes Yes

Logical volume management for large disks Yes Yes

Disk mirroring support Yes Yes

RAID support Yes Yes

OLE support No12 Yes

Remote procedure call support Yes Yes

Max. media storage size Virtually
unlimited

17 Billion
Gigabits

Network

Network manageability support Open View BackOffice

SNMP support Yes Yes

12 Microsoft offers a Windows Interface Source Environment add-on to Unix which provides
OLE support on Unix systems.

193

NOS Feature Unix (HP-UX) Windows NT

Dynamic Host Configuration Protocol
support (DHCP)

Yes Some

Type of network system Host-based Client/Server
Peer-to-Peer

Supports multiple network protocols Optional Yes

User Interface

Support for X-Windows/Motif Yes Yes

Support for Win32 GUT No Yes

Common desktop environment support Yes No

Security

Boot authentication Yes No

User log-on required Yes Yes

Per process memory protection Yes Yes

File-level access permissions Yes Yes13

File-access control lists Yes Yes

Security auditing Yes Yes

13 Windows NT and Unix both offer read, write, and execute permissions on each file.
Windows NT adds 'take ownership' and 'change permission' to the common set of file attributes.

194

APPENDIX E. UNIX AND WINDOWS NT COMPARISON MATRIX

i At \M l'KM Objectives and Tenet»

Objective 1: Improve User Productivity

Consistent t ser Interface

Integrated Applications
r-j i£, r- nl '« * _^i vii L-V >"■» * ii ■

Objective 2: Improve Development Efficiency

Common Open Systems Environment

■'■ - - - w

-r ' : . J' 7

Software Reuse

.'-.{jT'JlMlfttäfi Scaring

Objective 3: Improve Portability and Scalability

....... ,_ -.,. :_•_"'_ -~ <■' ■■■-•'?.- .' -

Objective 5: Promote Vendor Independence

Interchangeable Components
:->:,--- :-, «•■-- ;■. ■'* •;■ ■ • •-.• .'.■' i■•■■ •■■■' '.■.■;■ : ■ .'...

Non-Proprietary Specifications

195

\Flfci JAM Objectives and
 i

I'nix Windows

Objective 6: Reduce Life-Cycle Costs

IsiSllfiiiHiiiSiiiiliiS
Reduced Software Maintenance Costs

ITrai

Objective 7: Improve Security

..- j-!r •■'■^*JiiiusiMai:.L.i'-. -r- ■■■ "

Consistent Security Interfaces

"SS3^^i^^:SüiiftäBe6ysi,roeeMirig in Single
:~^w^JSSt?jii§s# — " " -i*—-~

■&z£l'-i: ".K^rP.-JK.TJ;.-t;-3Eii'.j"i-:"S'- ■■": A ; i

Support for Simultaneous Processing in a
Distributed System of Different Information
Domains

^^^onjmon^user: '„.
,„ neatioibS>stems

Objective 8: Improve Manageability

Management Standardization

$^>n;and

V

"V

V

¥
;i:li]+i;|:J:l;i.

:]±|;i±!:j:n!:]:]:i:{:b :|i|^ip|:]:rj::

;i:J:!:kl:i:;:::::':!: I:

A/

v

 F
V ■

,-'

u
;|::;j:i:|±!ii;j:):j

U

U;

*■;

N

V!

Legend:
V = Achieves the objective or tenet
V+ = Achieves the objective or tenet better than the other NOS
0 = Fails to meet the objective or tenet

196

LIST OF REFERENCES

[AETC01] Air Education and Training Command, What is GCCS?, Briefing slides describing the
Global Command and Control System.

[AIMT95] AIM Technology, Unix System Price Performance Guide. AIM Technology, 1995.

[ANDL90] Andleigh, Prabhat K., Unix System Architecture. Prentice Hall, 1990.

[ANSI96] American National Standards Institute Web page, available on the Internet at
http://www.ansi.org/brochl.html, 25 August 1996.

[ARN093] Arnold, Derek N., Unix Security: A practical Tutorial. McGraw-Hill Inc., 1993.

[AWUA95] Awuah, Patrick and Lazar, David, Microsoft Windows NT Server 3.5 Remote Access
Service (RAS), Microsoft White Paper, 1995.

[BACH86] Bach, Maurice J., The Design of the Unix Operating System. Prentice Hall, Inc.,
1986.

[BARA93] Baran, Nicolas, Windows NT supports POSIX, but does it matter'?, Byte Magazine,
November 1993.

[BERT87] Bertsekas, D. and Gallager, R., Data Networks. Prentice Hall, Englewood Cliffs, NJ,
1987.

[BUTL96] Butler, Shawn, Defense Information Services Agency, DII Common Operating
Environment (COE), DISA briefing slides, 24 April 1996.

[CANC95] Gancarz, Mike, The UNIX Philosophy. Digital Press, Boston, 1995.

[COMP96] Computer News Daily, available on the Internet at http://nytsyn.com/live/News3/
213_073196_24839.html.

[CONSO1] Constance, Paul, Buying secure products? Look closely at vendor claims.,
Government Computer News, 4 September 1995.

[CONS02] Constance, Paul C2 rating aside, NT isn Y secure., Government Computer News, 4
September 1995.

[CONS03] Constance, Paul, New Joint OPS System will be Built with Reused Code, Government
Computer News, 5 June 1995.

197

[CS2970] Stemp, Roger, CS2970 Class Notes, Naval Postgraduate School, f quarter 1996.

[CUMM96] Cummings, Anne, Hewlett-Packard, Customer Service Representative for
government contracts, Phone conversation conducted on 3 September 1996.

[CUST93] Custer, Helen, Inside Windows NT, Microsoft Press, 1993.

[DISA01] Defense Information Systems Agency, Defense Information System Network
Telecommunication Network and Strategy, available on the Internet at
http://www.disa.mil/info/pao041.html.

[DISA02] Defense Information Systems Agency, Defense Information Infrastructure Master
Plan, Executive Summary, available on the Internet at http://www.disa.mil/dii/diiexe/
execsuml.html.

[DISA03] Defense Information System Agency Center for Architecture, Department of Defense
Technical Architecture Framework for Information Management series, Version 2.0,
DISA, 30 June 1994.

[DISA04] Kurkowski, Stuart, Defense Information Infrastructure Common Operating
Environment Integration and Run Time Specification DIICOE I&RTS, Defense
Information System Agency, 13 February 1996.

[DISA05] Shroeder, Doug, COTS & GOTS Supporting Software for GCCS Version 2.1,
facsimile, 1996.

[DISA06] Defense Information Systems Agency, GCCS Baseline Common Operating
Environment, DISA, 28 November 1994.

[DTKS96] The Desktop Korn Shell Internet page available 1 September 1996 at http://
www.unx.com/~pend/dtksh.html#whatiscde.

[DUNP94] Dunphy, Ed., The Unix Industry and Open Systems in Transition: A Guidebook for
Managing Change, John Wiley & Sons, Inc. 1994.

[EETI96] EE Times Online - available on the Internet at http://techweb.cmp.com/eet/current/
hr.html#dataquest.

[FEIB95] Feibel, Werner. Novel's Complete Encyclopedia of Networking. Novel Press, San
Jose, CA, 1995.

[FONG94] Fong, T., Global Command and Control System (GCCS) JIEO Engineering Plan,
DIS, 1994.

198

[GASK95] Gaskin, James E., The Complete Guide to Netware 3.1. Sybex Inc., 1995.

[GAUS93] Gauss, J. A., RADM, USN, Navy Command Systems Strategy for the 1990 's,
Briefing, 07 December 1993.

[GAÜS96] Interview with Admiral Gauss, He 's Helping DOD 's Parts Fit Together,
Government Computer News, 4 March 96.

[GCNP96] Silver, Jutdith, Apple is the smoothest feds operator, Government Computer News. 8
January 1996.

[HALF96] Halfhill, Tom R., Unix Versus Windows NT: Microsoft's Flagship OS hasn 't
overtaken Unix, but savvy system managers are definitely taking Windows NT more
seriously, Byte Magazine, p. 42-52, May 1996.

[HANT96] Lee Ann Hantula of Anderson Consulting, Quote via e-mail, September 1996.

[HARC96] Harchelroad, Major Joan L., Defense Information Infrastructure (DII) Common
Operating Environment (COE) Configuration Management Process, DISA briefing,
14 February 1996.

[HELD92] Held, Gilbert., Network Management: Techniques. Tools and Systems. John Wiley
and Sons, New York, 1992.

[HEWP95] HP Product Briefing, HP 9000 C-Class Workstation Models C100 and CUO,
Hewlett-Packard Co. 1995.

[HPAC96] Hewlett-Packard TAC-4 Internet page, available on the Internet at http://
www.hp.com/go/tac4.

[HPVI96] HP version 10 operating system, Hewlett-Packard, available on the Internet at
http://www-dmo.external.hp.com:80/gsy/software/hpuxl0.html.

[HUDG96] Hudgins-Bonafield, Christine, The H-Report: Which Operating System for your
'Intranet'?, Network Computing Online, 15 January 1996.

[INTE95] Char, Orrin; Evans, Cindy; and Bisbee, Robert, Operating System Scalability:
Windows NT vs. Unix, Intergraph Corporation, 31 July 1995.

[ISOR96] International Standards Organization WEB page, available on the Internet at http://
www.iso.ch/infoe/intro.html, 25 August 1996.

[JCSP92] Joint Chiefs of Staff, C4Ifor the Warrior, 1992.

199

[JOKE94] Jo, Kenneth Y., McGreer, Michael M, and O'Brien, Gregory J., GCCS Target
Architecture Modeling, IEEE, 1994.

[KAMA94] Kamat, Hrishi., The Advantages of Open Systems, American City & County, March
1994.

[KING94] King, Adrian, Inside Windows 95, Microsoft Press, 1994.

[KUHN91] Kuhn, D. Richard, IEEE's POSIX: Making Progress, IEEE Spectrum, December
1991.

[LIEN80] Lientz, Bennet P. & Swanso, E. Burton, Software Maintenance Management: A
study of the Maintenance of Computer Application Software in 487 Data Processing
Organizations, Addison-Wesley Publishing Company, Inc., 1980.

[MACD95] MacDonald, Dave, Microsoft Windows NT 3.>3.5J: TCP IP Implementation
Details, Microsoft White Paper, Microsoft, September 1995.

[MALA92] Malamud, Carl, Analyzing Sun Networks, Van Nostrand Reinhold, 1992.

[MASU95] Masud, Sam, DISA Will See the Big Picture, Government Computer News, 5 June
1995.

[MCCA95] McCarthy, Shawn P., NT is POSIX-Complaint, GSBA Decides; Riding Raises
Questions, Government Computer News, 21 August 1995.

[MCCA96] McCarty, Shawn P. NSA will pay for B-level NT development, Government
Computer News, 12 January 1996.

[MFAQ96] Motif frequently asked question Internet page available at ftp://ftp.cen.com/pub/
Motif-FAQ.

[MICRO 1] Microsoft, Microsoft Windows NT Server 3.5/3.51: Domain Planning for your
Enterprise, Microsoft White Paper, 1995.

[MICR02] Microsoft, The Microsoft Strategy for Distributed Computing and DCE Services,
Microsoft White Paper, 1995.

[MICR03] Microsoft, Microsoft Windows NT From a Unix Point of View, Microsoft White
Paper, 1995.

[MICR04] Microsoft, Reliability and Fault Tolerance, Microsoft, 1995.

[MICR05] Microsoft, Scalability, Microsoft, 1995.

200

[MICR06] Microsoft, Security, Microsoft, 1995.

[MICR07] Microsoft, The Windows NT Workstation 3.51 Advantage, Microsoft Internet White
Paper, available on the Internet at http://w-ww.microsoft.com/NTWorkstation/
NTWarp.htm.

[MICR08] Microsoft, Windows NT Platform Gets C2 Evaluation, Microsoft Internet White
Paper available on the Internet at http://www.microsoft.com/NTWorkstation/
C2.htm#choice.

[MICR09] Microsoft Corporation, Microsoft Windows NT Workstation Installation Guide,
Microsoft Press.

[MICR10] Microsoft Corporation, Windows NT File System: Built for Data Security, available
on the Internet at http://www.microsoft.com/NTserver/ntfs_mb.htm.

[MICR11] Microsoft Corporation, Windows NT Workstation 3.51 Product Overview, available
on the Internet at http://www.microsoft.com/NTWorkstation/ntw35 lc.htm.

[MICR12] Microsoft Corporation, Windows NT Platform Gets C2 Evaluation, available on the
Internet at http://www.microsoft.com/NTWorkstation/c2.htm.

[MICRO] Microsoft Corporation, Security of Windows NT Server, available on the Internet at
http://www.microsoft.com/ntserver/ttsecur.htm.

[M1CR14] Microsoft Corporation, Integration of Windows family—based and UNIX Systems,
available on the Internet at http://www.microsoft.com/technet/boes/bo/winntas/
technote/nt204.htm#integration.

[MOTI96] MOTIF, How to get OSF, available on the Internet at http://www.rahul.net/kenton/
GettingMotif. html.

[MULL90] Nathan P. Müller and Robert P. Davidson, LANS to WANS: Network Management
in the 1990s. Artech House, Boston, 1990.

[NMSG95] Joint Chiefs of Staff, National Military Strategy of the United States of America,
Chairmen of the Joint Chiefs of Staff, February 1995.

[N0RT91] Norton, Peter and Hahn, Harley, Peter Norton's Guide to Unix, Bantam Books,
1991.

[NRAD01] Navy Research and Development Command and Intelligence Systems Division,
Description of the basic Concept of JMCIS and the philosophy behind JMCIS,
available on the Internet at http://perch.nosc.mil:8095/Docs/UIS_Supp/

201

Assumptions.html.

[NRAD02] Navy Research and Development Command and Intelligence Systems Division,
Collection of slides that describe the basic concept of JMCIS and the philosophy
behind JMCIS, available on the Internet at http://perch.nosc.mil:8095
/Briefs/Briefs.html.

[NRAD03] Navy Research and Development Command and Intelligence Systems Division,
Description of the basic concept of JMCIS Common Operating Environment,
available on the Internet at http://perch.nosc.mil:8095/Docs/COE/
JMCIS_COEl.html.

[NRAD04] Navy Research and Development Command and Intelligence Systems Division,
Describes of the basic concept of JMCIS Common Operating Environment, available
on the Internet at http://perch.nosc.mil:8095/Docs/COE/JMCIS_COE.2.html.

[NSTL94] National Software Testing Lab, Software Digest: Ratings Report, The Independent
Comparative Ratings Report for Selecting PC and LAN Software, Volume 11,
Number 11, November 1994.

[OLSE96] Olsen, Florence, Microsoft Aims to Fix Up NT for Buyers ofPOSIX, Government
Computer News, 4 March 1996.

[PABR96] Pabrai, Uday O., Unix Internetworking, Artech House, Boston, 1993.

[PAIG95] Paige, Emmett Jr., Technical Architecture Framework for Information Management
(TAFIM), Version 2.0, Memorandum from the Office of the Assistant Secretary of
Defense, 30 March 1995.

[PARA96] Parameswaran, Ramesh, Windows Family Interoperability and Integration Within
Unix Environments, Microsoft Corporation, 18 May 1996.

[RAME95] Ramesh, Balasubramaniam, IS3020 Class Notes, Naval Postgraduate School, 4*
quarter 1995.

[ROYS96] Royster, Curtis Jr., Maximizing Portability: Achieving Vendor Independence,, 31
January 1996.

[RULE95] Ruley, John D., Networking'Windows NT 3.51. Second Edition, John Wiley & Sons,
Inc., 1995.

[RUSS92] Deborah Russell and G.T. Gangemi ST., Computer Security Basics, O'Reilly &
Associates, Inc., Sebastopol, CA., 1992.

202

[SCHN87] Schneidewind, Norman F., The State of Software Maintenance, IEEE, March 1987.

[SCHN96] Schneidewind, Norman F., Do Standards, IEEE, January 1996.

[SCHW95] Schwartau, Winn, One expert shares his views on Microsoft's security features.,
Network World, 23 January 1995.

[SING95] Singh, Inder ML, POSIXhas a leading role in open systems, EE Times Interactive,
18 December 1995.

[SNMP96] Vallil, Tyler, SNMP VS CMIP: An Introduction to Network Management, available
on the Internet at http://www.undergrad.math.uwaterloo.ca/~tkvallil/snmp.html.

[STEV95] Stevenson, Douglas W., Network Management: What it is and what it isn 't,
available on the Internet at http://smurfland.cit.burTalo.edu/NetMAn/
Doc.Dstevenson, April 1995.

[STRA92] Strassmann, Paul, Open Systems Implementation and the Technical Reference
Model, Director of Defense Information Memorandum, 12 February 1992.

[TANE92] Tanenbaum, Andrew S., Modern Operating Systems. Prentice Hall, Englewood
Cliffs, NJ, 1992.

[UNIF95] UniForum White Paper, Unix: The Real Success Story, available on the Internet at
http://www.uniforum.org/news/html/publications/UnixWhitePaper.html.

[UWAT96] CMIP vs. SMIP: An Introduction To Network Management, available on the Internet
at http://www.undergrad.math.uwaterloo.ca/~tkvallil/snmp.html.

[WEBS94] Webster, John, Spec 1170, Computer World, 12 September 1994.

203

204

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Library, Code 013
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Dr. Norman Schneidewind, Code SM/Ss
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943

4. Dr. James Emery, Code 05
Associate Provost of Computing Information Systems
Naval Postgraduate School
Monterey, California 93943

5. Dr. William E. Ruzicka
Fleet Numerical Meteorology and Oceanography Center
7 Grace Hopper Avenue
Stop 1
Monterey, California 93943-5501

6. Lieutenant Mark F. Sauer
2455 Kensington Drive
Kalamazoo, Michigan 49008

7. Lieutenant Timothy J. Smith
3590 Syracuse Avenue
San Diego, California 92122

8. Lieutenant John W. Sprague
428 Dela Vina Avenue
Apartment 223
Monterey, California 93940

9. Lieutenant JG Joseph E. Staier
2007 Saxon Drive
New Smyrna Beach, Florida 32169

205

